Application of novel deep neural network on prediction of compressive strength of fly ash based concrete

粉煤灰 抗压强度 人工神经网络 材料科学 复合材料 计算机科学 人工智能
作者
Rahul Biswas,Manish Kumar,Divesh Ranjan Kumar,Pijush Samui,T. Pradeep,Manoj Kumar Rajak,Danial Jahed Armaghani,Sharad Singh
出处
期刊:Nondestructive Testing and Evaluation [Taylor & Francis]
卷期号:: 1-31 被引量:8
标识
DOI:10.1080/10589759.2024.2426703
摘要

Fly ash (FA)-based high-strength concrete (HSC) has attracted significant interest due to its potential to substitute Portland cement, offering both environmental benefits and improved performance. However, the design of FA-HSC is challenging, as key factors such as fly ash percentage, water content, and superplasticizer dosage have a complex influence on compressive strength. This study aims to develop an efficient predictive tool for FA-HSC mix design, using artificial intelligence (AI) models to address the inherent variability and uncertainty in these parameters. Six AI models, including a Deep Neural Network (DNN), were employed to analyse the relationships between mix design variables and compressive strength. The DNN model, in particular, demonstrated superior performance compared to the other models, with a high coefficient of determination (R2 = 0.89), variance accounted for (VAF = 88.3%), root mean square error (RMSE = 0.06), and residual standard error (RSR = 0.31). These results indicate that the DNN model can provide reliable predictions of compressive strength, offering a more efficient alternative to traditional trial-and-error methods. The AI-based approach can save both time and material costs while optimising performance. Overall, this AI-driven model contributes to the advancement of sustainable concrete technology by enabling more precise and resource-efficient mix designs for FA-based high-strength concrete.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
染唔唔发布了新的文献求助30
1秒前
chen完成签到,获得积分10
1秒前
谢小盟应助吃瓜不吐籽采纳,获得10
2秒前
3秒前
5秒前
小马甲应助武琳捷采纳,获得10
5秒前
晴明关发布了新的文献求助10
7秒前
8秒前
芋泥波波完成签到,获得积分10
9秒前
xpeng发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
12秒前
华仔应助天叶采纳,获得10
12秒前
13秒前
14秒前
xiaoxuening发布了新的文献求助10
15秒前
15秒前
孟筱发布了新的文献求助10
16秒前
科研通AI2S应助咩咩采纳,获得10
16秒前
可爱的函函应助xpeng采纳,获得10
16秒前
阿卡布拉完成签到 ,获得积分10
17秒前
思源应助Theprisoners采纳,获得10
18秒前
18秒前
小粽子发布了新的文献求助10
18秒前
zzm发布了新的文献求助10
19秒前
今后应助昇mss采纳,获得10
20秒前
机智的凡梦完成签到,获得积分10
21秒前
郑策元发布了新的文献求助10
22秒前
勤恳小丸子完成签到,获得积分10
23秒前
英姑应助112采纳,获得10
23秒前
乾清宫喝奶茶完成签到,获得积分10
25秒前
甜美的秋凌完成签到,获得积分10
25秒前
科里斯皮尔应助zyjsunye采纳,获得10
25秒前
Orange应助时尚的菲音采纳,获得10
26秒前
打打应助英勇的寒荷采纳,获得10
26秒前
27秒前
武琳捷完成签到,获得积分10
28秒前
研友_VZG7GZ应助跳跃的曼荷采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 1000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4438111
求助须知:如何正确求助?哪些是违规求助? 3911569
关于积分的说明 12148116
捐赠科研通 3558169
什么是DOI,文献DOI怎么找? 1953156
邀请新用户注册赠送积分活动 992988
科研通“疑难数据库(出版商)”最低求助积分说明 888508