Discovering the Origin of Catalyst Performance and Degradation of Electrochemical CO2 Reduction through Interpretable Machine Learning

催化作用 降级(电信) 还原(数学) 电化学 计算机科学 化学 材料科学 电极 数学 有机化学 物理化学 电信 几何学
作者
Daeun Chloe Shin,Hakan Karasu,Kyojin Jang,Chang Soo Kim,Kyeongsu Kim,Dongjin Kim,Young Jin,Ki Bong Lee,Keun Hwa Chae,Il Moon,Da Hye Won,Jonggeol Na,Ung Lee
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:15 (3): 2158-2170
标识
DOI:10.1021/acscatal.4c05530
摘要

Catalyst degradation is a significant challenge for the commercialization of the electrochemical reduction of CO2, as it decreases activity and selectivity. However, the high experimental cost of catalyst characterization hinders the generation of sufficient and valuable information regarding catalyst degradation. Recently, machine learning (ML) models have exhibited high potential to replace costly processes, but their low interpretability makes their application challenging. Herein, we introduce an interpretable ML framework that accurately projects the catalyst status using simple linear sweep voltammetry (LSV) within subseconds while providing insights into the origin of catalyst degradation. A convolutional neural network trained on experimentally collected 5196 LSV results achieved superior performance in total current and Faradaic efficiency predictions. The ML framework demonstrates an impressive accuracy of mean absolute error below 0.5% in predicting the Faradaic efficiency of various products, irrespective of the operating conditions and catalyst types. The prediction mechanism learnt by the model was interpreted via explainable artificial intelligence (XAI), and critical degradation factors were identified. We performed catalyst surface analyses at milestone points to verify the XAI interpretation and demonstrate the reliability of the proposed framework. This approach can potentially be applied to a wide range of electrochemistry involving catalytic process, battery degradation, and chemical process monitoring, suggesting that it offers a viable means of rapidly and reliably monitoring performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
钟钟完成签到 ,获得积分10
6秒前
Jasper应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得30
7秒前
wanci应助科研通管家采纳,获得10
7秒前
失眠醉易应助科研通管家采纳,获得10
7秒前
8秒前
8秒前
11秒前
Fischl完成签到 ,获得积分10
11秒前
12秒前
林洁佳完成签到,获得积分10
15秒前
JamesPei应助devilito采纳,获得10
16秒前
幽默山兰发布了新的文献求助10
17秒前
文G完成签到,获得积分20
17秒前
乐乐应助JxJ采纳,获得10
18秒前
林洁佳发布了新的文献求助100
19秒前
20秒前
20秒前
21秒前
唐咩咩咩发布了新的文献求助10
23秒前
贝贝完成签到,获得积分10
24秒前
25秒前
贝贝发布了新的文献求助10
27秒前
45343发布了新的文献求助10
29秒前
31秒前
香蕉觅云应助贝贝采纳,获得10
32秒前
领导范儿应助lll采纳,获得10
34秒前
唐咩咩咩完成签到,获得积分10
35秒前
36秒前
852应助欣慰晓兰采纳,获得30
40秒前
41秒前
kai发布了新的文献求助10
42秒前
陌上尘开完成签到 ,获得积分10
42秒前
46秒前
Firstoronre完成签到,获得积分10
46秒前
昔年若许完成签到,获得积分10
47秒前
50秒前
HAha完成签到,获得积分10
52秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778778
求助须知:如何正确求助?哪些是违规求助? 3324341
关于积分的说明 10217992
捐赠科研通 3039436
什么是DOI,文献DOI怎么找? 1668089
邀请新用户注册赠送积分活动 798545
科研通“疑难数据库(出版商)”最低求助积分说明 758415