已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Harnessing artificial intelligence in sepsis care: advances in early detection, personalized treatment, and real-time monitoring

败血症 重症监护医学 医学 计算机科学 内科学
作者
Fang Li,Shengguo Wang,Zhi Gao,Ma Qing,Shan L. Pan,Yingying Liu,Chengchen Hu
出处
期刊:Frontiers in Medicine [Frontiers Media SA]
卷期号:11: 1510792-1510792 被引量:26
标识
DOI:10.3389/fmed.2024.1510792
摘要

Sepsis remains a leading cause of morbidity and mortality worldwide due to its rapid progression and heterogeneous nature. This review explores the potential of Artificial Intelligence (AI) to transform sepsis management, from early detection to personalized treatment and real-time monitoring. AI, particularly through machine learning (ML) techniques such as random forest models and deep learning algorithms, has shown promise in analyzing electronic health record (EHR) data to identify patterns that enable early sepsis detection. For instance, random forest models have demonstrated high accuracy in predicting sepsis onset in intensive care unit (ICU) patients, while deep learning approaches have been applied to recognize complications such as sepsis-associated acute respiratory distress syndrome (ARDS). Personalized treatment plans developed through AI algorithms predict patient-specific responses to therapies, optimizing therapeutic efficacy and minimizing adverse effects. AI-driven continuous monitoring systems, including wearable devices, provide real-time predictions of sepsis-related complications, enabling timely interventions. Beyond these advancements, AI enhances diagnostic accuracy, predicts long-term outcomes, and supports dynamic risk assessment in clinical settings. However, ethical challenges, including data privacy concerns and algorithmic biases, must be addressed to ensure fair and effective implementation. The significance of this review lies in addressing the current limitations in sepsis management and highlighting how AI can overcome these hurdles. By leveraging AI, healthcare providers can significantly enhance diagnostic accuracy, optimize treatment protocols, and improve overall patient outcomes. Future research should focus on refining AI algorithms with diverse datasets, integrating emerging technologies, and fostering interdisciplinary collaboration to address these challenges and realize AI’s transformative potential in sepsis care.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
春天的粥完成签到 ,获得积分10
刚刚
绛橘色的日落完成签到 ,获得积分10
1秒前
和谐的芷文完成签到 ,获得积分10
1秒前
直菱完成签到,获得积分10
1秒前
2秒前
fufu完成签到 ,获得积分10
2秒前
111完成签到 ,获得积分10
2秒前
du发布了新的文献求助10
3秒前
Chen完成签到 ,获得积分10
3秒前
荔枝励志完成签到 ,获得积分10
6秒前
ggg完成签到 ,获得积分10
8秒前
寒假工完成签到 ,获得积分10
8秒前
xiongqi完成签到 ,获得积分10
8秒前
栗子完成签到,获得积分10
10秒前
moiumuio完成签到,获得积分10
10秒前
11秒前
11秒前
可爱的函函应助loading采纳,获得10
11秒前
乳酸菌小面包完成签到,获得积分10
13秒前
Rye227完成签到,获得积分10
16秒前
vvvvvv发布了新的文献求助10
16秒前
风笛完成签到,获得积分10
18秒前
qqq完成签到,获得积分10
18秒前
2224270676完成签到,获得积分10
19秒前
四月的海棠完成签到 ,获得积分10
19秒前
车厘子发布了新的文献求助10
20秒前
壮观的寒松完成签到,获得积分10
21秒前
vvvvvv完成签到,获得积分10
21秒前
21秒前
23秒前
我是老大应助zht采纳,获得10
23秒前
yiyi完成签到 ,获得积分10
24秒前
25秒前
Tinao关注了科研通微信公众号
25秒前
27秒前
深情安青应助科研小李采纳,获得30
27秒前
称心的栗子完成签到 ,获得积分10
29秒前
29秒前
XX0完成签到 ,获得积分10
30秒前
追寻夜香完成签到 ,获得积分10
31秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5334337
求助须知:如何正确求助?哪些是违规求助? 4472497
关于积分的说明 13920266
捐赠科研通 4366320
什么是DOI,文献DOI怎么找? 2399004
邀请新用户注册赠送积分活动 1392150
关于科研通互助平台的介绍 1362881