ADR-DQPU: A Novel ADR Signal Detection Using Deep Reinforcement and Positive-Unlabeled Learning

强化学习 人工智能 计算机科学 信号(编程语言) 模式识别(心理学) 机器学习 程序设计语言
作者
Chun Kit Jason Chung,Wen-Yang Lin
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-8 被引量:1
标识
DOI:10.1109/jbhi.2024.3492005
摘要

The medical community has grappled with the challenge of analysis and early detection of severe and unknown adverse drug reactions (ADRs) from Spontaneous Reporting Systems (SRSs) like the FDA Adverse Event Reporting System (FAERS), which often lack professional verification and have inherent uncertainties. These limitations have exacerbated the difficulty of training a robust machine-learning model for detecting ADR signals from SRSs. A solution is to use some authoritative knowledge bases of ADRs, such as SIDER and BioSNAP, which contain limited confirmed ADR relationships (positive), resulting in a relatively small training set compared to the substantial amount of unknown data (unlabeled). This paper proposes a novel ADR signal detection method, ADR-DQPU, to alleviate the issues above by integrating deep reinforcement Q-learning and positive-unlabeled learning. Upon validation using FAERS data, our model outperformed six traditional methods, exhibiting an overall accuracy improvement of 26.45%, an average accuracy improvement of 52.15%, a precision enhancement of 1.89%, a recall improvement of 18.57%, and an F1 score improvement of 10.95%. In comparison to two state-of-the-art machine learning methods, our approach demonstrated an overall accuracy improvement of 64.1%, an average accuracy improvement of 28.23%, a slight decrease of 1.91% in precision, a recall improvement of 55.56%, and an F1 score improvement of 45.53%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
酷波er应助超帅的傀斗采纳,获得10
3秒前
Xiaopei完成签到,获得积分10
4秒前
啥,这都是啥完成签到,获得积分10
6秒前
Falling完成签到,获得积分10
7秒前
科研通AI5应助小仙采纳,获得10
7秒前
李爱国应助Luna采纳,获得10
8秒前
9秒前
10秒前
凯凯完成签到,获得积分10
10秒前
11秒前
W~舞完成签到,获得积分10
12秒前
Cdy完成签到,获得积分10
12秒前
无奈世立发布了新的文献求助10
13秒前
雪白浩天完成签到,获得积分10
13秒前
ding应助grumpysquirel采纳,获得10
14秒前
南风完成签到 ,获得积分10
14秒前
15秒前
陈甸甸发布了新的文献求助10
17秒前
Persevere完成签到,获得积分10
17秒前
啦啦啦啦完成签到,获得积分10
17秒前
cdercder应助tjfwg采纳,获得10
18秒前
华仔完成签到,获得积分10
19秒前
正直的如凡完成签到,获得积分10
20秒前
20秒前
20秒前
ZDY完成签到,获得积分10
21秒前
Falling发布了新的文献求助10
21秒前
哈哈呀完成签到 ,获得积分10
21秒前
23秒前
dadigege应助一颗葡萄采纳,获得10
24秒前
25秒前
关琦完成签到,获得积分10
25秒前
25秒前
欢喜的秋玲完成签到,获得积分10
26秒前
你今天学了多少完成签到 ,获得积分10
26秒前
脱壳金蝉完成签到,获得积分10
26秒前
guochang发布了新的文献求助10
26秒前
Running完成签到,获得积分10
27秒前
细心斩发布了新的文献求助30
27秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801189
求助须知:如何正确求助?哪些是违规求助? 3346865
关于积分的说明 10330761
捐赠科研通 3063197
什么是DOI,文献DOI怎么找? 1681450
邀请新用户注册赠送积分活动 807586
科研通“疑难数据库(出版商)”最低求助积分说明 763729