ADR-DQPU: A Novel ADR Signal Detection Using Deep Reinforcement and Positive-Unlabeled Learning

强化学习 人工智能 计算机科学 信号(编程语言) 模式识别(心理学) 机器学习 程序设计语言
作者
Chun Kit Jason Chung,Wen-Yang Lin
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:29 (2): 831-839 被引量:1
标识
DOI:10.1109/jbhi.2024.3492005
摘要

The medical community has grappled with the challenge of analysis and early detection of severe and unknown adverse drug reactions (ADRs) from Spontaneous Reporting Systems (SRSs) like the FDA Adverse Event Reporting System (FAERS), which often lack professional verification and have inherent uncertainties. These limitations have exacerbated the difficulty of training a robust machine-learning model for detecting ADR signals from SRSs. A solution is to use some authoritative knowledge bases of ADRs, such as SIDER and BioSNAP, which contain limited confirmed ADR relationships (positive), resulting in a relatively small training set compared to the substantial amount of unknown data (unlabeled). This paper proposes a novel ADR signal detection method, ADR-DQPU, to alleviate the issues above by integrating deep reinforcement Q-learning and positive-unlabeled learning. Upon validation using FAERS data, our model outperformed six traditional methods, exhibiting an overall accuracy improvement of 26.45%, an average accuracy improvement of 52.15%, a precision enhancement of 1.89%, a recall improvement of 18.57%, and an F1 score improvement of 10.95%. In comparison to two state-of-the-art machine learning methods, our approach demonstrated an overall accuracy improvement of 64.1%, an average accuracy improvement of 28.23%, a slight decrease of 1.91% in precision, a recall improvement of 55.56%, and an F1 score improvement of 45.53%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助crazycathaha采纳,获得10
刚刚
桐桐应助jeronimo采纳,获得10
刚刚
wang完成签到,获得积分10
刚刚
哒哒哒完成签到,获得积分10
刚刚
刚刚
2秒前
4秒前
4秒前
霸气明雪完成签到,获得积分10
4秒前
杨一凡关注了科研通微信公众号
4秒前
5秒前
6秒前
张晨发布了新的文献求助10
6秒前
6秒前
liao应助兹恩采纳,获得20
6秒前
7秒前
7秒前
8秒前
霸气明雪发布了新的文献求助10
9秒前
江小米完成签到,获得积分10
9秒前
蔡1发布了新的文献求助10
9秒前
JamesPei应助学林书屋采纳,获得30
10秒前
hanhan发布了新的文献求助10
11秒前
Jasper应助长度2到采纳,获得10
11秒前
11秒前
Jasper应助科研通管家采纳,获得10
11秒前
酷波er应助科研通管家采纳,获得10
11秒前
月圆夜完成签到,获得积分10
11秒前
smoli发布了新的文献求助30
11秒前
我是老大应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
Wefaily应助科研通管家采纳,获得10
11秒前
上官若男应助科研通管家采纳,获得30
11秒前
打打应助科研通管家采纳,获得10
11秒前
打打应助科研通管家采纳,获得20
11秒前
科目三应助科研通管家采纳,获得10
11秒前
汉堡包应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5451736
求助须知:如何正确求助?哪些是违规求助? 4559592
关于积分的说明 14273822
捐赠科研通 4483509
什么是DOI,文献DOI怎么找? 2455542
邀请新用户注册赠送积分活动 1446416
关于科研通互助平台的介绍 1422323