电解质
共晶体系
溶剂化
阳极
材料科学
锂(药物)
丁二腈
硅
离子
碳酸乙烯酯
氧化物
电化学
化学物理
化学工程
合金
无机化学
化学
物理化学
电极
复合材料
有机化学
冶金
医学
工程类
内分泌学
作者
Shengwei Dong,Lingfeng Shi,Shenglu Geng,Yanbin Ning,Cong Kang,Yan Zhang,Ziwei Liu,Jiaming Zhu,Zhuomin Qiang,Lin Zhou,Geping Yin,Dalong Li,Tiansheng Mu,Shuaifeng Lou
标识
DOI:10.1007/s40820-024-01592-1
摘要
Abstract Micrometer-sized silicon oxide (SiO) anodes encounter challenges in large-scale applications due to significant volume expansion during the alloy/de-alloy process. Herein, an innovative deep eutectic electrolyte derived from succinonitrile is introduced to enhance the cycling stability of SiO anodes. Density functional theory calculations validate a robust ion–dipole interaction between lithium ions (Li + ) and succinonitrile (SN). The cosolvent fluoroethylene carbonate (FEC) optimizes the Li + solvation structure in the SN-based electrolyte with its weakly solvating ability. Molecular dynamics simulations investigate the regulating mechanism of ion–dipole and cation–anion interaction. The unique Li + solvation structure, enriched with FEC and TFSI − , facilitates the formation of an inorganic–organic composite solid electrolyte interphase on SiO anodes. Micro-CT further detects the inhibiting effect on the SiO volume expansion. As a result, the SiO|LiCoO 2 full cells exhibit excellent electrochemical performance in deep eutectic-based electrolytes. This work presents an effective strategy for extending the cycle life of SiO anodes by designing a new SN-based deep eutectic electrolyte.
科研通智能强力驱动
Strongly Powered by AbleSci AI