医学
前瞻性队列研究
队列
回顾性队列研究
队列研究
单中心
机器学习
外科
内科学
计算机科学
作者
Sarthak Mohanty,Fthimnir M. Hassan,Lawrence G. Lenke,Erik Lewerenz,Peter G. Passias,Eric O. Klineberg,Virginie Lafage,Justin S. Smith,D. Kojo Hamilton,Jeffrey L. Gum,Renaud Lafage,Jeffrey P. Mullin,Bassel G. Diebo,Thomas J. Buell,Han Jo Kim,Khalid Kebaish,Robert K. Eastlack,Alan H. Daniels,Gregory M. Mundis,Richard A. Hostin
标识
DOI:10.1016/j.spinee.2024.02.010
摘要
Among adult spinal deformity (ASD) patients, heterogeneity in patient pathology, surgical expectations, baseline impairments, and frailty complicates comparisons in clinical outcomes and research. This study aims to qualitatively segment ASD patients using machine learning-based clustering on a large, multicenter, prospectively gathered ASD cohort.
科研通智能强力驱动
Strongly Powered by AbleSci AI