AI-powered Hyperrealism: Next Step in Cinematic Rendering?

医学 渲染(计算机图形) 计算机图形学(图像) 计算机科学
作者
Ramin Javan,Navid Mostaghni
出处
期刊:Radiology [Radiological Society of North America]
卷期号:310 (1)
标识
DOI:10.1148/radiol.231971
摘要

Background Recent advancements in artificial intelligence (AI)–powered image generation present opportunities to enhance three-dimensional medical images. Diffusion, an iterative denoising process, represents the standard of many of the current tools used for this purpose. Purpose To demonstrate the current capabilities of diffusion technology by using Midjourney, version 5.2, a text-to-image generative AI tool, and present a practical guide for its use. Materials and Methods This exploratory study investigates the principles, parameters, and prompt engineering techniques for generating images focusing on Midjourney from July 27 to August 3, 2023. Step-by-step instructions show the innate capability of this technology in creating realistic medical images. Results Thirty images were selected, including eye, skin, and vascular aneurysm images. Varying prompt phrasing and weighting techniques allowed for the customization of output image characteristics. Although the details of Midjourney’s model training are confidential, it is estimated that it was trained on at least hundreds of millions of images from the web. Anatomic fidelity was not always maintained because the training data set is not necessarily based on accurate medical images. There are shortcomings in this nascent technology regarding its ability to create entities such as digits of the hand or precise text. Conclusion AI image generation has the potential to improve three-dimensional medical images for certain applications through added visual detail and appeal but ongoing collaboration is needed between radiologists and AI developers due to the overreliance on art and photography in the training data, which may result in inaccurate anatomic results. Moreover, the evolving landscape of ethical discussions and copyright stipulations warrants close attention. © RSNA, 2024 Supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
坦呐完成签到,获得积分10
1秒前
万重山完成签到,获得积分10
1秒前
情怀应助栗子采纳,获得20
1秒前
Owen应助化身孤岛的鲸采纳,获得10
2秒前
Lucas应助MLi采纳,获得10
2秒前
LLxiaolong完成签到,获得积分10
2秒前
杨榆藤发布了新的文献求助10
2秒前
动人的珩发布了新的文献求助10
2秒前
暗器完成签到,获得积分10
2秒前
薛艳发布了新的文献求助10
2秒前
哇啦哇啦完成签到,获得积分10
3秒前
ohh完成签到,获得积分20
3秒前
小白发布了新的文献求助10
3秒前
6秒前
小屁孩完成签到,获得积分10
6秒前
祖三问完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
科研通AI5应助荡南桥采纳,获得10
7秒前
Akim应助荡南桥采纳,获得10
7秒前
Hello应助开放山河采纳,获得10
7秒前
clyhg完成签到,获得积分10
8秒前
9秒前
9秒前
AI发布了新的文献求助10
9秒前
10秒前
JamesPei应助自然代亦采纳,获得10
10秒前
科研通AI5应助pangpang采纳,获得30
11秒前
11秒前
csatsd完成签到,获得积分10
11秒前
鱼鱼完成签到 ,获得积分10
12秒前
堪洪完成签到,获得积分10
12秒前
12秒前
xul279完成签到,获得积分10
12秒前
特昂唐发布了新的文献求助10
13秒前
花满楼发布了新的文献求助10
13秒前
苏芳发布了新的文献求助10
13秒前
LXXue完成签到,获得积分10
14秒前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3817421
求助须知:如何正确求助?哪些是违规求助? 3360775
关于积分的说明 10409208
捐赠科研通 3078870
什么是DOI,文献DOI怎么找? 1690820
邀请新用户注册赠送积分活动 814169
科研通“疑难数据库(出版商)”最低求助积分说明 768060