Seepage prediction model of the earth-rock dam based on TCN considering rainfall lag effect

滞后 滞后时间 时滞 土(古典元素) 地质学 环境科学 水文学(农业) 岩土工程 气象学 计算机科学 数学 地理 生物系统 计算机网络 数学物理 生物
作者
Manli Qu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (6): 066116-066116 被引量:3
标识
DOI:10.1088/1361-6501/ad2e68
摘要

Abstract Renewable energy has the highest conversion efficiency, is the most flexible in regulating peak power in the grid, and has the potential to significantly reduce emissions. Hydropower is one of the main ways to optimize power energy structure by building earth-rock dams that block water and generate electricity. Seepage is a physical quantity that characterizes the safety of earth-rock dams. Studying the intelligent prediction model of earth-rock dams is an effective means of understanding the evolution of seepage behavior, and it is also crucial for the safe operation and energy efficiency of earth-rock dams. To create a rainfall factor expression reflecting the hysteresis effect of rain, actual monitoring data of different piezoelectric tubes on the upstream and downstream sides of the soil core wall of an earth-rock dam is considered. Based on the key influencing factors of the seepage behavior of earth-rock dams, the novel temporal convolutional network (TCN) algorithm in deep learning is introduced into the seepage behavior prediction of earth-rock dams, constructing the intelligent prediction model of seepage of earth-rock dams based on TCN. The engineering example shows that the seepage prediction model of the earth-rock dam based on TCN has better prediction performance than the seepage prediction model of the earth-rock dam based on support vector regression (SVR), extreme learning machine, and long-short term memory. The determination coefficient is more significant than 0.9, and the relative error of prediction is less than 1‰. The model’s prediction accuracy is high, and the stability of the prediction performance is good. The model’s prediction performance also improves after considering the rainfall lag effect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
aK3完成签到,获得积分20
2秒前
丘比特应助STAN采纳,获得10
2秒前
2秒前
思源应助嗯哼采纳,获得10
2秒前
阳光雨发布了新的文献求助10
3秒前
难过风华完成签到,获得积分10
4秒前
aK3发布了新的文献求助10
5秒前
cumtxzs发布了新的文献求助10
5秒前
帅气冰珍发布了新的文献求助10
6秒前
大模型应助健忘的板凳采纳,获得10
7秒前
9秒前
领导范儿应助沉默的芒果采纳,获得10
9秒前
浮生发布了新的文献求助10
9秒前
蜗牛完成签到,获得积分10
10秒前
在水一方应助帅气冰珍采纳,获得10
10秒前
英姑应助帅帅中带点小坏采纳,获得10
11秒前
11秒前
乐乐应助bingsu108采纳,获得10
11秒前
Ava应助cumtxzs采纳,获得10
12秒前
远山笑你完成签到 ,获得积分10
13秒前
lianmeiliu发布了新的文献求助10
14秒前
14秒前
16秒前
adi完成签到,获得积分10
21秒前
22秒前
22秒前
22秒前
小W完成签到 ,获得积分10
23秒前
24秒前
25秒前
lqqqq发布了新的文献求助10
27秒前
28秒前
28秒前
bububusbu完成签到,获得积分10
30秒前
30秒前
31秒前
Hello应助谁家那小谁采纳,获得10
32秒前
啊哒吸哇完成签到,获得积分10
32秒前
黄青青完成签到,获得积分10
33秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842878
求助须知:如何正确求助?哪些是违规求助? 3384881
关于积分的说明 10537922
捐赠科研通 3105474
什么是DOI,文献DOI怎么找? 1710326
邀请新用户注册赠送积分活动 823582
科研通“疑难数据库(出版商)”最低求助积分说明 774149