已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

358: PREDICTING SEVERITY OF DELIRIUM ON ICU ADMISSION: DEVELOPMENT OF AN AUTOMATED MACHINE LEARNING MODEL

医学 谵妄 重症监护医学 人工智能 机器学习 计算机科学
作者
Roshini Raghu,Adnan Md Mohiuddin,Yuli Huang,Vitaly Herasevich,Heidi Lindroth
出处
期刊:Critical Care Medicine [Lippincott Williams & Wilkins]
卷期号:52 (1): S153-S153
标识
DOI:10.1097/01.ccm.0000999616.33196.99
摘要

Introduction: Approximately 50% of critically ill patients are affected by delirium. The early detection and mitigation of delirium severity in the intensive care unit (ICU) can significantly reduce the risk of patient morbidity and mortality. Electronic tools that measure and predict delirium severity can help identify such patients upon ICU admission and facilitate an individualized care plan. The primary aim of this study was to develop an automated machine learning model for delirium severity measurement and predict the level of delirium severity upon ICU admission. Methods: This retrospective study (01/01/2018-12/31/2021) extracted demographic and clinical data from the electronic health record (EHR) for adult patients (age>18) at ICU admission. To automate delirium severity measurement, a crosswalk mapped EHR data to CAM-ICU-7 scoring, the gold-standard for delirium severity. The correlation and accuracy of the automated model were evaluated against clinically documented delirium. Five machine learning models (multinomial logistic regression, gradient boosting method, random forest, neural network, and support vector machine) were supplemented with Sequential Optimization (SO) techniques. Their performance was evaluated to develop and finalize the model. Analysis was completed with R, v4.2.2. Results: In total, 38,021 patients were included with a median age of 64 years (52-74), 42.3% female (n=16,093/38,021) and 22% had documented delirium (n=8,222/38,021). The automated delirium severity measurement rule at time of ICU admission significantly correlated (r=0.52, p<.0001) and accurately assigned no/moderate/severe levels in 89% of the documented delirium cases. Multinomial logistic regression with SO performed with 73% ± 3% accuracy compared to other methods. The accuracy of severe delirium prediction was 78% while moderate delirium severity prediction was 33%. The cumulative dose of outpatient benzodiazepines and given upon ICU admission were top features identified to predict severe delirium. Conclusions: This is the first study to automate delirium severity measurement using routine EHR data and to develop a model to predict the level of delirium severity upon ICU admission. Future studies should validate and improve the model in a prospective study.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
inu1255完成签到,获得积分0
2秒前
2秒前
英姑应助paul采纳,获得10
2秒前
Nick完成签到 ,获得积分10
2秒前
修管子完成签到 ,获得积分10
3秒前
HMR完成签到 ,获得积分10
4秒前
Rainbow完成签到 ,获得积分10
4秒前
勤恳冰淇淋完成签到 ,获得积分10
4秒前
xylor完成签到,获得积分10
4秒前
牛蛙丶丶完成签到,获得积分10
4秒前
美满的乐瑶完成签到 ,获得积分10
5秒前
小聖完成签到 ,获得积分10
5秒前
iidae完成签到,获得积分10
5秒前
dfjeid发布了新的文献求助10
5秒前
shentaii完成签到,获得积分10
6秒前
he发布了新的文献求助10
6秒前
友好胜完成签到 ,获得积分10
8秒前
gwh完成签到 ,获得积分10
8秒前
Ljy完成签到 ,获得积分10
8秒前
cnuwxc完成签到,获得积分10
9秒前
木子完成签到 ,获得积分10
9秒前
义气严青完成签到,获得积分10
9秒前
han完成签到,获得积分10
9秒前
隐形路灯完成签到 ,获得积分10
9秒前
GGBoy完成签到 ,获得积分10
9秒前
蓝色天空完成签到,获得积分10
10秒前
cc完成签到 ,获得积分10
10秒前
逍遥小书生完成签到 ,获得积分10
10秒前
Huanghong完成签到,获得积分10
10秒前
Denmark完成签到 ,获得积分10
10秒前
水晶鞋完成签到 ,获得积分10
11秒前
paul完成签到,获得积分10
11秒前
平底锅攻击完成签到 ,获得积分10
12秒前
Vegeta完成签到 ,获得积分10
12秒前
12秒前
12秒前
诸葛小哥哥完成签到 ,获得积分10
13秒前
13秒前
陈旧完成签到,获得积分10
14秒前
Thanatos完成签到,获得积分10
14秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840608
求助须知:如何正确求助?哪些是违规求助? 3382636
关于积分的说明 10525610
捐赠科研通 3102399
什么是DOI,文献DOI怎么找? 1708788
邀请新用户注册赠送积分活动 822685
科研通“疑难数据库(出版商)”最低求助积分说明 773472

今日热心研友

YifanWang
1
zho
1
clinched
1
注:热心度 = 本日应助数 + 本日被采纳获取积分÷10