翼型
螺旋桨
执行机构
控制理论(社会学)
四轴飞行器
控制器(灌溉)
工程类
姿态控制
叶片节距
飞行操纵面
断层(地质)
控制工程
计算机科学
转子(电动)
空气动力学
控制(管理)
结构工程
海洋工程
人工智能
机械工程
航空航天工程
农学
电气工程
地震学
地质学
生物
作者
Eeshan Kulkarni,N. Sundararajan,Suresh Sundaram
出处
期刊:Unmanned Systems
[World Scientific]
日期:2023-05-04
卷期号:12 (06): 1001-1022
被引量:1
标识
DOI:10.1142/s2301385024500341
摘要
This paper presents a reliable variable pitch propeller (VPP) quadcopter with a cambered airfoil propeller called Heli-quad that achieves full-attitude control under a complete failure of one actuator. The idea of employing a cambered airfoil in the propeller blade plays a pivotal role in the full attitude control under the failure of an actuator. Experimental data shows that the cambered airfoil propellers generate significantly higher torque than symmetric airfoil propellers, enabling yaw control even under a complete failure of an actuator. The theoretical analysis clearly indicates that Heli-Quad with three actuators is sufficient to provide full-attitude control. The proposed unified fault-tolerant controller consists of a outer loop position tracking controller, a proportional-derivative inner loop attitude controller, and a novel neural-network-based reconfigurable control allocation scheme that computes the actuator commands. Experimentally validated propeller aerodynamic data has been used to train the neural network. High-fidelity software-in-the-loop simulations using the SIMSCAPE environment are carried out to analyze the Heli-quad’s performance. From the empirical result, the maximum tolerable delay in Fault Detection and Isolation (FDI) is 180 ms. The results indicate that even under the complete failure of one actuator, the position tracking performance of the Heli-quad is closer to nominal conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI