材料科学
压电
钛酸钡
静电纺丝
纱线
复合材料
纳米颗粒
纳米纤维
聚合物
纳米技术
陶瓷
作者
Dabin Kim,Ziyue Yang,Jaewon Cho,Donggeun Park,Dong Hwi Kim,Jinkee Lee,Seunghwa Ryu,Sang‐Woo Kim,Miso Kim
出处
期刊:EcoMat
[Wiley]
日期:2023-06-13
卷期号:5 (8)
被引量:35
摘要
Abstract Piezoelectric polymer fibers offer a fundamental element in intelligent fabrics with their shape adaptability and energy‐conversion capability for wearable activity and health monitoring applications. Nonetheless, realizing high‐performance smart polymer fibers faces a technical challenge due to the relatively low piezoelectric performance. Here, we demonstrate high‐performance piezoelectric yarns simultaneously equipped with structural robustness and mechanical flexibility. The key to substantially enhanced piezoelectric performance is promoting the electroactive β‐phase formation during electrospinning via adding an adequate amount of barium titanate (BaTiO 3 ) nanoparticles into the poly(vinylidene fluoride‐trifluoroethylene) (P(VDF‐TrFE)). When transformed into a yarn structure by twisting the electrospun mats, the BaTiO 3 ‐doped P(VDF‐TrFE) fibers become mechanically strengthened with significantly improved elastic modulus and ductility. Owing to the tailored convolution neural network algorithms architected for classification, the as‐developed BaTiO 3 ‐doped piezo‐yarn device woven into a cotton fabric exhibits monitoring and identifying capabilities for body signals during seven human motion activities with a high accuracy of 99.6%. image
科研通智能强力驱动
Strongly Powered by AbleSci AI