亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A critical review on intelligent optimization algorithms and surrogate models for conventional and unconventional reservoir production optimization

计算机科学 最优化问题 生产(经济) 替代模型 工程优化 数学优化 优化测试函数 多群优化 算法 机器学习 数学 经济 宏观经济学
作者
Wang Lian,Yuedong Yao,Xiaodong Luo,Caspar Daniel Adenutsi,Guoxiang Zhao,Fengpeng Lai
出处
期刊:Fuel [Elsevier]
卷期号:350: 128826-128826 被引量:63
标识
DOI:10.1016/j.fuel.2023.128826
摘要

Aiming to find the most suitable development schemes of conventional and unconventional reservoirs for maximum energy supply or economic benefits, reservoir production optimization is one of the most essential challenges in closed-loop reservoir management. With the developments of artificial intelligence technologies during the past decades, both intelligent optimization algorithms and surrogate models have been adopted to solve reservoir production optimization problems for improved efficiency and/or accuracy in the final optimization results. In this paper, a critical review of intelligent optimization algorithms and surrogate models applied to production optimization problems in conventional and unconventional reservoirs is conducted. It covers a few different topics within the target research area, ranging from the basic elements (optimization variables, objective function and constraints) that constitute a reservoir production optimization problem, to various intelligent optimization algorithms developed from different perspectives and for different types of optimization problems (e.g., with single or multiple objective functions), and intelligent surrogate models that are built based on different artificial intelligence technologies and for different application purposes. The particular issues of production optimization in unconventional reservoirs are highlighted, and future challenges and prospects within the area of reservoir production optimization are also discussed. It is our hope that this critical review may help attract more attention to intelligent optimization algorithms and surrogate models applied to production optimization problems in conventional and unconventional reservoirs, and promote research and development activities within this area in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
24秒前
26秒前
haoqingyun发布了新的文献求助10
30秒前
hanwei_mei发布了新的文献求助10
30秒前
34秒前
36秒前
hanwei_mei完成签到,获得积分10
42秒前
haoqingyun发布了新的文献求助10
59秒前
CodeCraft应助腼腆的月亮采纳,获得10
1分钟前
田様应助科研通管家采纳,获得10
1分钟前
1分钟前
浮游应助wuran采纳,获得10
1分钟前
haoqingyun完成签到,获得积分10
1分钟前
搔扒完成签到,获得积分10
1分钟前
大熊完成签到 ,获得积分10
1分钟前
sy完成签到 ,获得积分10
2分钟前
情怀应助安详的面包采纳,获得10
2分钟前
qqq完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
ceeray23应助科研通管家采纳,获得10
3分钟前
远方完成签到,获得积分10
3分钟前
浮游应助wuran采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
4分钟前
4分钟前
佳佳发布了新的文献求助10
5分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
Akim应助佳佳采纳,获得10
5分钟前
5分钟前
NexusExplorer应助huaixup采纳,获得10
5分钟前
5分钟前
佳佳发布了新的文献求助10
5分钟前
狂野的含烟完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650990
求助须知:如何正确求助?哪些是违规求助? 4782616
关于积分的说明 15052919
捐赠科研通 4809775
什么是DOI,文献DOI怎么找? 2572590
邀请新用户注册赠送积分活动 1528583
关于科研通互助平台的介绍 1487585