Lossless Compression of Point Cloud Sequences Using Sequence Optimized CNN Models

计算机科学 八叉树 编码(内存) 体素 点云 卷积神经网络 人工智能 算法 模式识别(心理学)
作者
Emre C. Kaya,Ioan Tabus
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 83678-83691
标识
DOI:10.1109/access.2022.3197295
摘要

In this paper we propose a new paradigm for encoding the geometry of dense point cloud sequences, where a convolutional neural network (CNN), which estimates the encoding distributions, is optimized on several frames of the sequence to be compressed. We adopt lightweight CNN structures, we perform training as part of the encoding process and the CNN parameters are transmitted as part of the bitstream. The newly proposed encoding scheme operates on the octree representation for each point cloud, consecutively encoding each octree resolution level. At every octree resolution level, the voxel grid is traversed section-by-section (each section being perpendicular to a selected coordinate axis), and in each section, the occupancies of groups of two-by-two voxels are encoded at once in a single arithmetic coding operation. A context for the conditional encoding distribution is defined for each two-by-two group of voxels based on the information available about the occupancy of the neighboring voxels in the current and lower resolution layers of the octree. The CNN estimates the probability mass functions of the occupancy patterns of all the voxel groups from one section in four phases. In each new phase, the contexts are updated with the occupancies encoded in the previous phase, and each phase estimates the probabilities in parallel, providing a reasonable trade-off between the parallelism of the processing and the informativeness of the contexts. The CNN training time is comparable to the time spent in the remaining encoding steps, leading to competitive overall encoding times. The bitrates and encoding-decoding times compare favorably with those of recently published compression schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
任嘉炜发布了新的文献求助10
1秒前
Noah完成签到 ,获得积分0
2秒前
Clash完成签到,获得积分10
2秒前
Steven发布了新的文献求助100
3秒前
董菲音发布了新的文献求助10
6秒前
Peng完成签到,获得积分20
6秒前
简时完成签到 ,获得积分10
7秒前
难过的小甜瓜完成签到 ,获得积分10
10秒前
奋斗的怀曼完成签到,获得积分10
11秒前
董菲音完成签到,获得积分10
13秒前
tengfei完成签到,获得积分10
14秒前
传奇3应助老黑采纳,获得10
16秒前
laura完成签到,获得积分10
18秒前
19秒前
19秒前
19秒前
应万言完成签到,获得积分0
20秒前
21秒前
gab发布了新的文献求助10
23秒前
yliaoyou发布了新的文献求助10
23秒前
25秒前
25秒前
tdjz完成签到,获得积分10
26秒前
kenchilie完成签到 ,获得积分10
27秒前
27秒前
CipherSage应助青阳采纳,获得10
27秒前
CodeCraft应助ray采纳,获得10
29秒前
苏silence发布了新的文献求助10
29秒前
执着新蕾完成签到,获得积分10
30秒前
善学以致用应助arrebol采纳,获得10
33秒前
34秒前
35秒前
38秒前
40秒前
苏silence发布了新的文献求助10
40秒前
ee完成签到 ,获得积分10
42秒前
42秒前
42秒前
44秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778901
求助须知:如何正确求助?哪些是违规求助? 3324431
关于积分的说明 10218443
捐赠科研通 3039495
什么是DOI,文献DOI怎么找? 1668204
邀请新用户注册赠送积分活动 798591
科研通“疑难数据库(出版商)”最低求助积分说明 758440