Finite-difference-informed graph network for solving steady-state incompressible flows on block-structured grids

物理 压缩性 不可压缩流 图形 有限差分 有限差分法 纳维-斯托克斯方程组 应用数学 稳态(化学) 块(置换群论) 机械 数学分析 理论计算机科学 几何学 热力学 物理化学 计算机科学 化学 数学
作者
Yiye Zou,Tianyu Li,Lin Lu,J.H. Wang,Shufan Zou,Laiping Zhang,Xiaogang Deng
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (10) 被引量:1
标识
DOI:10.1063/5.0228104
摘要

Advances in deep learning have enabled physics-informed neural networks to solve partial differential equations. Numerical differentiation using the finite-difference (FD) method is efficient in physics-constrained designs, even in parameterized settings. In traditional computational fluid dynamics (CFD), body-fitted block-structured grids are often employed for complex flow cases when obtaining FD solutions. However, convolution operators in convolutional neural networks for FD are typically limited to single-block grids. To address this issue, graphs and graph networks are used to learn flow representations across multi-block-structured grids. A graph convolution-based FD method (GC-FDM) is proposed to train graph networks in a label-free physics-constrained manner, enabling differentiable FD operations on unstructured graph outputs. To demonstrate model performance from single- to multi-block-structured grids, the parameterized steady incompressible Navier–Stokes equations are solved for a lid-driven cavity flow and the flows around single and double circular cylinder configurations. When compared to a CFD solver under various boundary conditions, the proposed method achieves a relative error in velocity field predictions in the order of 10−3. Furthermore, the proposed method reduces training costs by approximately 20% compared to a physics-informed neural network. To further verify the effectiveness of GC-FDM in multi-block processing, a 30P30N airfoil geometry is considered, and the predicted results are reasonably compared with those given by CFD. Finally, the applicability of GC-FDM to a three-dimensional (3D) case is tested using a 3D cavity geometry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助CFF采纳,获得30
刚刚
拼搏的败完成签到 ,获得积分10
刚刚
脑洞疼应助冰冰大王采纳,获得10
1秒前
1秒前
领导范儿应助单薄的水云采纳,获得10
2秒前
3秒前
abccd123发布了新的文献求助10
3秒前
合适的蛋挞应助文件撤销了驳回
4秒前
无花果应助橘里采纳,获得10
5秒前
5秒前
ding应助不倦采纳,获得10
5秒前
科研通AI2S应助99采纳,获得10
5秒前
浮游应助li采纳,获得10
6秒前
6秒前
Nostalgia发布了新的文献求助10
7秒前
SiberateMai完成签到,获得积分10
7秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
米缸发布了新的文献求助10
10秒前
10秒前
SiberateMai发布了新的文献求助10
12秒前
斯文败类应助渴望者采纳,获得10
13秒前
缺粥发布了新的文献求助10
14秒前
冰冰大王完成签到,获得积分10
15秒前
刘金金发布了新的文献求助10
15秒前
胡可完成签到,获得积分20
15秒前
16秒前
明理发布了新的文献求助10
17秒前
17秒前
Alex应助兴奋鼠标采纳,获得20
18秒前
世界纷纷扰扰完成签到,获得积分10
18秒前
樊哲伟发布了新的文献求助10
19秒前
19秒前
19秒前
19秒前
米缸完成签到,获得积分10
20秒前
小小发布了新的文献求助10
22秒前
甜筒发布了新的文献求助10
23秒前
负责的流沙完成签到 ,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4914223
求助须知:如何正确求助?哪些是违规求助? 4188690
关于积分的说明 13008744
捐赠科研通 3957434
什么是DOI,文献DOI怎么找? 2169808
邀请新用户注册赠送积分活动 1188078
关于科研通互助平台的介绍 1095707