Dynamic Operations of a Mobile Charging Crowdsourcing Platform

众包 服务(商务) 计算机科学 持续时间(音乐) 操作员(生物学) 移动设备 离散化 工程类 运筹学 数学优化 万维网 文学类 化学 经济 抑制因子 艺术 经济 数学分析 操作系统 基因 转录因子 生物化学 数学
作者
Yiming Yan,Xi Lin,Fang He,David Z.W. Wang
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:58 (5): 995-1015
标识
DOI:10.1287/trsc.2023.0126
摘要

This paper investigates the operation of a novel electric vehicles (EVs) charging service mode, that is, crowdsourced mobile charging service for EVs, whereby a crowdsourcing platform is established to arrange suppliers (crowdsourced chargers) to deliver charging service to customers’ electric vehicles (parked EVs) at low-battery levels. From the platform operator’s perspective, we aim to determine the optimal operation strategies for mobile charging crowdsourcing platforms to achieve specific objectives. A mathematical modeling framework is developed to capture the interactions among supply, demand, and service operations in the crowdsourced mobile charging market. To design an efficient solution method to solve the formulated model, we first analyze the model properties by rigorously proving that a crucial variable set for operating the mobile charging crowdsourcing system includes charging price, commission control, and period-specific aggregate demand control. Besides, we provide both an equivalent condition and a necessary condition for checking the feasibility of these crucial variables. On top of this, we construct a search tree according to the operation periods in a day to solve the optimal operation strategies, wherein a nondominated principle is adopted as an accelerating technique in the searching process. The solution obtained from the proposed solution algorithm is proved to be sufficiently close to the actual global optimal solutions of the formulated model up to the resolution of the discretization scheme adopted. Numerical examples provide evidence verifying the model’s validity and the solution method’s efficiency. Overall, the research outcome of this work can offer service operators structured and valuable guidelines for operating mobile charging crowdsourcing platforms. Funding: This work was supported by the Singapore Ministry of Education [Grant RG124/21]. Supplemental Material: The online appendices are available at https://doi.org/10.1287/trsc.2023.0126 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
华仔应助breeze采纳,获得30
1秒前
2秒前
易小名完成签到 ,获得积分10
3秒前
li完成签到,获得积分10
4秒前
乐乐应助keke采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
超帅连虎应助科研通管家采纳,获得10
4秒前
4秒前
田様应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
orixero应助科研通管家采纳,获得10
4秒前
yy发布了新的文献求助10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得30
5秒前
jack1511完成签到,获得积分10
5秒前
MchemG应助科研通管家采纳,获得10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
6秒前
zhong发布了新的文献求助10
7秒前
maow发布了新的文献求助10
8秒前
无花果应助善良的剑通采纳,获得10
8秒前
啊啊啊啊完成签到,获得积分20
9秒前
Jim发布了新的文献求助10
9秒前
期待发布了新的文献求助10
9秒前
10秒前
11秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 720
Scents of China: A Modern History of Smell 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Media as Procedures of Communication 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4133401
求助须知:如何正确求助?哪些是违规求助? 3670375
关于积分的说明 11606146
捐赠科研通 3366772
什么是DOI,文献DOI怎么找? 1849725
邀请新用户注册赠送积分活动 913272
科研通“疑难数据库(出版商)”最低求助积分说明 828523