医学
冲程(发动机)
深度学习
缺血性中风
计算机断层摄影术
人工智能
多中心研究
转化(遗传学)
心脏病学
放射科
内科学
计算机科学
随机对照试验
缺血
机械工程
生物化学
化学
基因
工程类
作者
Huanhuan Ren,Haojie Song,Jiayang Liu,Shaoguo Cui,Meilin Gong,Yongmei Li
标识
DOI:10.1016/j.acra.2024.09.052
摘要
Hemorrhagic transformation (HT) is one of the most serious complications in patients with acute ischemic stroke (AIS) following reperfusion therapy. The purpose of this study is to develop and validate deep learning (DL) models utilizing multiphase computed tomography angiography (CTA) and computed tomography perfusion (CTP) images for the fully automated prediction of HT.
科研通智能强力驱动
Strongly Powered by AbleSci AI