AI adoption in supply chain management: a systematic literature review

供应链管理 供应链 业务 系统回顾 过程管理 知识管理 运营管理 工程类 计算机科学 营销 政治学 梅德林 法学
作者
Gulnaz Shahzadi,Fu Jia,Lujie Chen,Albert John
出处
期刊:Journal of Manufacturing Technology Management [Emerald Publishing Limited]
卷期号:35 (6): 1125-1150 被引量:12
标识
DOI:10.1108/jmtm-09-2023-0431
摘要

Purpose This systematic literature review (SLR) aims to critically analyze the current academic research on the adoption of artificial intelligence (AI) in supply chain management (SCM) and develop a theoretical framework and future research agenda. Design/methodology/approach Through a comprehensive review of 68 relevant papers, this study synthesizes the findings to identify key themes based on extended technology-organization-environment (TOE) theory. Findings This study analyzes AI integration in SCM based on the TOE framework, identifying drivers (technological, organizational, environmental and human), barriers (technical, organizational, economic and human) and outcomes (operational, environmental, social and economic) of AI adoption. It emphasizes AI's potential in improving SCM practices like resilience, process improvement and sustainable operations, contributing to better decision-making, efficiency and sustainable practices. The study also provided a novel framework that offers insights for strategic AI integration in SCM, aiding policymakers and managers in understanding and leveraging AI's multifaceted impact. Originality/value The originality of the study lies in the development of a theoretical framework that not only elucidates the drivers and barriers of AI in SCM but also maps the operational, financial, environmental and social outcomes of AI-enabled practices. This framework serves as a novel tool for policymakers and managers, offering specific, actionable insights for the strategic integration of AI in supply chains (SCs). Furthermore, the study's value is underscored by its potential to guide policy formulation and managerial decision-making, with a focus on optimizing SC efficiency, sustainability and resilience through AI adoption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zcg发布了新的文献求助10
1秒前
tan_sg发布了新的文献求助10
2秒前
lxy完成签到,获得积分10
2秒前
星辰大海应助SSS采纳,获得10
3秒前
lsy发布了新的文献求助10
3秒前
呃呃发布了新的文献求助10
3秒前
李沐唅发布了新的文献求助10
3秒前
Ava应助小情绪采纳,获得20
3秒前
IMkily发布了新的文献求助10
4秒前
Lucas应助wu采纳,获得10
5秒前
薰衣草完成签到,获得积分10
6秒前
乐观小之应助含笑半步癫采纳,获得10
6秒前
yznfly应助dudu采纳,获得30
8秒前
酷波er应助meteor采纳,获得30
8秒前
山鬼吹灯完成签到,获得积分10
9秒前
孙笑川258完成签到,获得积分10
9秒前
sddq完成签到,获得积分10
10秒前
孜然完成签到,获得积分20
10秒前
10秒前
勤恳的月亮完成签到,获得积分10
11秒前
11秒前
今后应助小全采纳,获得10
11秒前
SciGPT应助络桵采纳,获得10
12秒前
孜然发布了新的文献求助30
14秒前
WBC发布了新的文献求助10
15秒前
15秒前
15秒前
美羊羊完成签到,获得积分10
15秒前
孙不缺完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
17秒前
看看发布了新的文献求助30
17秒前
FashionBoy应助爱听歌曼文采纳,获得10
17秒前
充电宝应助夏夏采纳,获得10
17秒前
17秒前
17秒前
18秒前
情怀应助juphen2采纳,获得10
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
Revolution in China and Russia: Reorganizing empires into nation states 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3932633
求助须知:如何正确求助?哪些是违规求助? 3477640
关于积分的说明 10997962
捐赠科研通 3207931
什么是DOI,文献DOI怎么找? 1772575
邀请新用户注册赠送积分活动 859888
科研通“疑难数据库(出版商)”最低求助积分说明 797375