亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Mapping the common gene networks that underlie related diseases

计算生物学 生物 遗传学 生物信息学 进化生物学
作者
Sara Brin Rosenthal,Sarah N. Wright,Sophie Liu,Christopher Churas,Daisy Chilin-Fuentes,Chi‐Hua Chen,Kathleen M. Fisch,Dexter Pratt,Jason F. Kreisberg,Trey Ideker
出处
期刊:Nature Protocols [Nature Portfolio]
卷期号:18 (6): 1745-1759 被引量:5
标识
DOI:10.1038/s41596-022-00797-1
摘要

A longstanding goal of biomedicine is to understand how alterations in molecular and cellular networks give rise to the spectrum of human diseases. For diseases with shared etiology, understanding the common causes allows for improved diagnosis of each disease, development of new therapies and more comprehensive identification of disease genes. Accordingly, this protocol describes how to evaluate the extent to which two diseases, each characterized by a set of mapped genes, are colocalized in a reference gene interaction network. This procedure uses network propagation to measure the network ‘distance’ between gene sets. For colocalized diseases, the network can be further analyzed to extract common gene communities at progressive granularities. In particular, we show how to: (1) obtain input gene sets and a reference gene interaction network; (2) identify common subnetworks of genes that encompass or are in close proximity to all gene sets; (3) use multiscale community detection to identify systems and pathways represented by each common subnetwork to generate a network colocalized systems map; (4) validate identified genes and systems using a mouse variant database; and (5) visualize and further investigate select genes, interactions and systems for relevance to phenotype(s) of interest. We demonstrate the utility of this approach by identifying shared biological mechanisms underlying autism and congenital heart disease. However, this protocol is general and can be applied to any gene sets attributed to diseases or other phenotypes with suspected joint association. A typical NetColoc run takes less than an hour. Software and documentation are available at https://github.com/ucsd-ccbb/NetColoc . This protocol describes how to use NetColoc, a freely available tool for evaluating the extent to which two related diseases, each characterized by a set of mapped genes, are colocalized in a reference gene interaction network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小张完成签到 ,获得积分10
4秒前
4秒前
5秒前
9秒前
9秒前
卡琳完成签到 ,获得积分10
10秒前
bkagyin应助科研通管家采纳,获得10
15秒前
15秒前
斯寜应助科研通管家采纳,获得10
15秒前
狗咚嘻完成签到,获得积分10
20秒前
川西你彪发布了新的文献求助10
21秒前
实力不允许完成签到 ,获得积分10
35秒前
47秒前
大胆的茗茗完成签到,获得积分10
54秒前
55秒前
FL完成签到 ,获得积分10
1分钟前
高大迎曼完成签到,获得积分10
1分钟前
zho应助Rita采纳,获得10
1分钟前
小飞完成签到 ,获得积分10
1分钟前
杨怂怂完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
江念完成签到,获得积分20
1分钟前
江念发布了新的文献求助10
1分钟前
段段完成签到,获得积分10
2分钟前
小蘑菇应助接q辣舞采纳,获得10
2分钟前
陈补天完成签到 ,获得积分10
2分钟前
玩命的糖豆完成签到 ,获得积分10
2分钟前
赘婿应助科研通管家采纳,获得10
2分钟前
我是老大应助科研通管家采纳,获得10
2分钟前
bc应助科研通管家采纳,获得30
2分钟前
我是老大应助科研通管家采纳,获得10
2分钟前
SciGPT应助科研通管家采纳,获得10
2分钟前
2分钟前
聪明勇敢有力气完成签到 ,获得积分10
2分钟前
YL完成签到,获得积分10
2分钟前
2分钟前
追三完成签到 ,获得积分10
2分钟前
hyg发布了新的文献求助10
2分钟前
yyc发布了新的文献求助10
2分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3807998
求助须知:如何正确求助?哪些是违规求助? 3352680
关于积分的说明 10359926
捐赠科研通 3068647
什么是DOI,文献DOI怎么找? 1685213
邀请新用户注册赠送积分活动 810332
科研通“疑难数据库(出版商)”最低求助积分说明 766022