已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting Drug-Target Affinity by Learning Protein Knowledge From Biological Networks

计算机科学 人工智能 药物靶点 机器学习 化学 生物化学
作者
Wenjian Ma,Shugang Zhang,Zhen Li,Mingjian Jiang,Shuang Wang,Nianfan Guo,Yuanfei Li,Xiangpeng Bi,Huasen Jiang,Zhiqiang Wei
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (4): 2128-2137 被引量:24
标识
DOI:10.1109/jbhi.2023.3240305
摘要

Predicting drug-target affinity (DTA) is a crucial step in the process of drug discovery. Efficient and accurate prediction of DTA would greatly reduce the time and economic cost of new drug development, which has encouraged the emergence of a large number of deep learning-based DTA prediction methods. In terms of the representation of target proteins, current methods can be classified into 1D sequence- and 2D-protein graph-based methods. However, both two approaches focused only on the inherent properties of the target protein, but neglected the broad prior knowledge regarding protein interactions that have been clearly elucidated in past decades. Aiming at the above issue, this work presents an end-to-end DTA prediction method named MSF-DTA (Multi-Source Feature Fusion-based Drug-Target Affinity). The contributions can be summarized as follows. First, MSF-DTA adopts a novel "neighboring feature"-based protein representation. Instead of utilizing only the inherent features of a target protein, MSF-DTA gathers additional information for the target protein from its biologically related "neighboring" proteins in PPI (i.e., protein-protein interaction) and SSN (i.e., sequence similarity) networks to get prior knowledge. Second, the representation was learned using an advanced graph pre-training framework, VGAE, which could not only gather node features but also learn topological connections, therefore contributing to a richer protein representation and benefiting the downstream DTA prediction task. This study provides new perspective for the DTA prediction task, and evaluation results demonstrated that MSF-DTA obtained superior performances compared to current state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ll完成签到,获得积分10
2秒前
ahui完成签到 ,获得积分10
3秒前
gomm完成签到,获得积分10
3秒前
王大可发布了新的文献求助10
4秒前
啾啾发布了新的文献求助10
4秒前
上官若男应助Ruby于采纳,获得50
5秒前
完美世界应助酷炫小馒头采纳,获得10
9秒前
华仔应助cici采纳,获得10
10秒前
11秒前
12秒前
稳重盼易发布了新的文献求助10
15秒前
尹静涵完成签到 ,获得积分10
15秒前
cheng完成签到 ,获得积分10
16秒前
粗心的沉鱼完成签到,获得积分10
18秒前
22秒前
老张完成签到 ,获得积分10
22秒前
啾啾发布了新的文献求助10
23秒前
25秒前
29秒前
30秒前
apollo3232完成签到,获得积分0
30秒前
31秒前
32秒前
33秒前
白鸽鸽完成签到,获得积分10
33秒前
知秋完成签到 ,获得积分10
35秒前
江姜酱先生完成签到,获得积分10
36秒前
YaoZhang完成签到 ,获得积分10
37秒前
科研通AI6应助4645采纳,获得10
38秒前
xiao完成签到 ,获得积分10
38秒前
可爱的函函应助dingjingjing采纳,获得10
39秒前
李晨发布了新的文献求助10
40秒前
啾啾发布了新的文献求助10
40秒前
哈哈完成签到 ,获得积分10
41秒前
喬老師完成签到,获得积分10
41秒前
yingying完成签到 ,获得积分10
41秒前
42秒前
46秒前
RGG完成签到,获得积分20
47秒前
一颗有理想的蛋完成签到 ,获得积分10
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4925658
求助须知:如何正确求助?哪些是违规求助? 4195911
关于积分的说明 13031201
捐赠科研通 3967422
什么是DOI,文献DOI怎么找? 2174618
邀请新用户注册赠送积分活动 1191845
关于科研通互助平台的介绍 1101561