Aspect-level sentiment analysis: A survey of graph convolutional network methods

计算机科学 图形 水准点(测量) 理论计算机科学 大地测量学 地理
作者
Huyen Trang Phan,Ngoc Thanh Nguyên,Dosam Hwang
出处
期刊:Information Fusion [Elsevier BV]
卷期号:91: 149-172 被引量:21
标识
DOI:10.1016/j.inffus.2022.10.004
摘要

Aspect-level sentiment analysis (ALSA) is the process of collecting, processing, analyzing, inferring, and synthesizing subjective sentiments of entities contained in texts at the aspect level. The development of social networks has been driven by the on-going appearance of vast numbers of short documents, such as those in which opinions are expressed and comments are made. The text in these documents reflects users’ emotions related to entities. The ALSA of these short texts plays an important role in solving various problems in life. Particularly in e-commerce, manufacturers can use sentiment analysis to determine users’ orientations, adapt their products to perfection, identify potential users, and pinpoint users that influence other users. Therefore, improving the performance of ALSA methods has recently attracted the interest of researchers. Currently, four main types of ALSA methods are available: knowledge-based, machine learning-based, hybrid-based, and most recently, graph convolutional network (GCN)-based. This study is the first survey to focus on reviewing the proposed methods for ALSA using GCN methods. In this paper, we propose a novel taxonomy to divide GCN-based ALSA models into three categories based on the types of knowledge extraction. We present and compare GCN-based ALSA methods following our taxonomy comprehensively. Common benchmark datasets and text representations that are often used in GCN-based methods are also discussed. In addition, we discuss five challenges and suggest seven future research directions for GCN-based ALSA methods. The findings of our survey are expected to provide the necessary guidelines for beginners, practitioners, and new researchers to improve the performance of ALSA methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小燕子完成签到,获得积分10
3秒前
gao完成签到,获得积分10
4秒前
缥缈立果完成签到,获得积分10
4秒前
Calmbiao完成签到,获得积分10
4秒前
眨眼眨眨眼完成签到,获得积分10
7秒前
沐沐完成签到 ,获得积分10
7秒前
8秒前
9秒前
pjxxx完成签到 ,获得积分10
10秒前
12秒前
隐形的谷槐完成签到 ,获得积分10
12秒前
Hello应助瘦瘦冰枫采纳,获得10
14秒前
张涛发布了新的文献求助10
16秒前
悦耳的盼芙完成签到,获得积分10
16秒前
研友_LMBPXn发布了新的文献求助10
17秒前
19秒前
风中的双双完成签到,获得积分10
19秒前
香蕉觅云应助gao采纳,获得10
20秒前
ilk666完成签到,获得积分10
22秒前
111完成签到,获得积分10
23秒前
byron完成签到 ,获得积分10
25秒前
英姑应助lizhiqian2024采纳,获得10
25秒前
求知完成签到,获得积分10
26秒前
幽默不愁发布了新的文献求助10
26秒前
无私诗云完成签到,获得积分10
27秒前
pb完成签到 ,获得积分10
27秒前
研友_LMBPXn完成签到,获得积分10
29秒前
英姑应助YeeBohr采纳,获得10
30秒前
31秒前
32秒前
38秒前
空洛完成签到 ,获得积分10
42秒前
孤独剑完成签到 ,获得积分10
43秒前
西cheng发布了新的文献求助10
43秒前
张小兔啊完成签到,获得积分10
43秒前
LANER完成签到 ,获得积分10
45秒前
Guai完成签到 ,获得积分10
47秒前
蝈蝈完成签到,获得积分10
48秒前
48秒前
天生圣人完成签到,获得积分10
49秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801065
求助须知:如何正确求助?哪些是违规求助? 3346581
关于积分的说明 10329750
捐赠科研通 3063074
什么是DOI,文献DOI怎么找? 1681341
邀请新用户注册赠送积分活动 807491
科研通“疑难数据库(出版商)”最低求助积分说明 763726