Dense packings of polyhedra: Platonic and Archimedean solids

多面体 结晶学 组合数学 地质学 数学 化学
作者
S. Torquato,Yang Jiao
出处
期刊:Physical Review E [American Physical Society]
卷期号:80 (4) 被引量:165
标识
DOI:10.1103/physreve.80.041104
摘要

Understanding the nature of dense particle packings is a subject of intense research in the physical, mathematical, and biological sciences. The preponderance of previous work has focused on spherical particles and very little is known about dense polyhedral packings. We formulate the problem of generating dense packings of nonoverlapping, nontiling polyhedra within an adaptive fundamental cell subject to periodic boundary conditions as an optimization problem, which we call the adaptive shrinking cell (ASC) scheme. This optimization problem is solved here (using a variety of multiparticle initial configurations) to find the dense packings of each of the Platonic solids in three-dimensional Euclidean space R3 , except for the cube, which is the only Platonic solid that tiles space. We find the densest known packings of tetrahedra, icosahedra, dodecahedra, and octahedra with densities 0.823..., 0.836..., 0.904..., and 0.947..., respectively. It is noteworthy that the densest tetrahedral packing possesses no long-range order. Unlike the densest tetrahedral packing, which must not be a Bravais lattice packing, the densest packings of the other nontiling Platonic solids that we obtain are their previously known optimal (Bravais) lattice packings. We also derive a simple upper bound on the maximal density of packings of congruent nonspherical particles and apply it to Platonic solids, Archimedean solids, superballs, and ellipsoids. Provided that what we term the "asphericity" (ratio of the circumradius to inradius) is sufficiently small, the upper bounds are relatively tight and thus close to the corresponding densities of the optimal lattice packings of the centrally symmetric Platonic and Archimedean solids. Our simulation results, rigorous upper bounds, and other theoretical arguments lead us to the conjecture that the densest packings of Platonic and Archimedean solids with central symmetry are given by their corresponding densest lattice packings. This can be regarded to be the analog of Kepler's sphere conjecture for these solids.The truncated tetrahedron is the only nonchiral Archimedean solid that is not centrally symmetric [corrected], the densest known packing of which is a non-lattice packing with density at least as high as 23/24=0.958 333... . We discuss the validity of our conjecture to packings of superballs, prisms, and antiprisms as well as to high-dimensional analogs of the Platonic solids. In addition, we conjecture that the optimal packing of any convex, congruent polyhedron without central symmetry generally is not a lattice packing. Finally, we discuss the possible applications and generalizations of the ASC scheme in predicting the crystal structures of polyhedral nanoparticles and the study of random packings of hard polyhedra.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丁莞发布了新的文献求助10
刚刚
1秒前
李健的小迷弟应助HJJHJH采纳,获得10
1秒前
2秒前
隐形的雁完成签到,获得积分10
3秒前
王文静完成签到,获得积分10
5秒前
5秒前
犹豫的忆梅完成签到,获得积分10
5秒前
cancan谭小面完成签到,获得积分10
6秒前
6秒前
烟波钓客完成签到,获得积分10
7秒前
segovia_tju发布了新的文献求助10
7秒前
打打应助Dakerin2采纳,获得10
7秒前
rye227应助TIGun采纳,获得10
8秒前
安安发布了新的文献求助10
9秒前
10秒前
FashionBoy应助任性的诗柳采纳,获得10
10秒前
10秒前
14秒前
传奇3应助1018wxy采纳,获得10
14秒前
优秀剑愁完成签到 ,获得积分10
14秒前
15秒前
牛头人完成签到,获得积分10
15秒前
Dakerin2发布了新的文献求助10
19秒前
小鱼医生完成签到 ,获得积分10
29秒前
Dakerin2完成签到,获得积分10
32秒前
32秒前
32秒前
33秒前
酷波er应助小杨采纳,获得10
34秒前
1018wxy完成签到,获得积分10
35秒前
含糊的万恶完成签到,获得积分10
35秒前
GTRK完成签到 ,获得积分10
36秒前
1018wxy发布了新的文献求助10
38秒前
39秒前
39秒前
40秒前
ding应助如意草丛采纳,获得10
40秒前
tsumugi完成签到,获得积分10
41秒前
半柚发布了新的文献求助10
44秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778226
求助须知:如何正确求助?哪些是违规求助? 3323870
关于积分的说明 10216390
捐赠科研通 3039102
什么是DOI,文献DOI怎么找? 1667782
邀请新用户注册赠送积分活动 798389
科研通“疑难数据库(出版商)”最低求助积分说明 758366