磁导率
土壤水分
岩土工程
材料科学
润湿
渗透(HVAC)
土壤科学
环境科学
地质学
复合材料
化学
膜
生物化学
作者
J.H. Li,Limin Zhang,Xu Li
摘要
Cracks are widely present in natural and engineered soils. As water infiltration into a cracked soil often starts from unsaturated conditions, the soil-water characteristic curve (SWCC) and permeability function for the cracked soil are required when conducting seepage analysis. This paper presents a method to predict the SWCC and permeability function for cracked soil considering crack volume changes during drying–wetting processes. The cracked soil is viewed as an overlapping continuum of a crack network system and a soil matrix system. The pore-size distributions for the two pore systems at a particular state can be determined and used to estimate the SWCCs and permeability functions. The estimated SWCCs and permeability functions for the two pore systems can be combined to give the SWCC and the permeability function for the cracked soil at that state. Then, the SWCC and permeability function for the cracked soil at different states along a crack development path can be obtained and combined to give the SWCC or permeability function for the cracked soil considering crack volume changes. Examples are presented to illustrate the prediction of the SWCCs and permeability functions for a cracked soil along five crack development paths.
科研通智能强力驱动
Strongly Powered by AbleSci AI