Choosing estimands in clinical trials with missing data

概化理论 缺少数据 协议(科学) 计量经济学 精算学 心理学 计算机科学 医学 经济 替代医学 机器学习 发展心理学 病理
作者
Craig Mallinckrodt,Geert Molenberghs,Suchitrita S. Rathmann
出处
期刊:Pharmaceutical Statistics [Wiley]
卷期号:16 (1): 29-36 被引量:42
标识
DOI:10.1002/pst.1765
摘要

Recent research has fostered new guidance on preventing and treating missing data. Consensus exists that clear objectives should be defined along with the causal estimands; trial design and conduct should maximize adherence to the protocol specified interventions; and a sensible primary analysis should be used along with plausible sensitivity analyses. Two general categories of estimands are effects of the drug as actually taken (de facto, effectiveness) and effects of the drug if taken as directed (de jure, efficacy). Motivated by examples, we argue that no single estimand is likely to meet the needs of all stakeholders and that each estimand has strengths and limitations. Therefore, stakeholder input should be part of an iterative study development process that includes choosing estimands that are consistent with trial objectives. To this end, an example is used to illustrate the benefit from assessing multiple estimands in the same study. A second example illustrates that maximizing adherence reduces sensitivity to missing data assumptions for de jure estimands but may reduce generalizability of results for de facto estimands if efforts to maximize adherence in the trial are not feasible in clinical practice. A third example illustrates that whether or not data after initiation of rescue medication should be included in the primary analysis depends on the estimand to be tested and the clinical setting. We further discuss the sample size and total exposure to placebo implications of including post-rescue data in the primary analysis. Copyright © 2016 John Wiley & Sons, Ltd.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助感动背包采纳,获得10
刚刚
wade发布了新的文献求助10
2秒前
2秒前
3秒前
花藏影完成签到,获得积分10
4秒前
慕青应助平常毛衣采纳,获得10
6秒前
浮游应助州府十三采纳,获得10
6秒前
7秒前
8秒前
灵巧的导师完成签到,获得积分10
8秒前
shgd完成签到,获得积分10
10秒前
zwy发布了新的文献求助10
13秒前
wade完成签到,获得积分10
13秒前
16秒前
隐形曼青应助闭眼玩手机采纳,获得10
16秒前
量子星尘发布了新的文献求助10
17秒前
小蘑菇应助pingli19861002采纳,获得10
18秒前
18秒前
21秒前
飘飘玲应助刘恒宇采纳,获得10
21秒前
alooof发布了新的文献求助10
24秒前
24秒前
pcr163应助QinLi采纳,获得50
24秒前
斯文败类应助小熊同学采纳,获得30
24秒前
俭朴的发带完成签到,获得积分10
27秒前
ccob完成签到,获得积分10
28秒前
gezhao发布了新的文献求助10
29秒前
30秒前
哆啦的空间站应助北彧采纳,获得20
31秒前
大宝剑2号完成签到,获得积分10
31秒前
CodeCraft应助淡定树叶采纳,获得10
32秒前
33秒前
34秒前
无所谓发布了新的文献求助10
35秒前
香蕉觅云应助磐xst采纳,获得10
35秒前
星宿完成签到,获得积分10
36秒前
38秒前
平常毛衣发布了新的文献求助10
38秒前
39秒前
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4920227
求助须知:如何正确求助?哪些是违规求助? 4191881
关于积分的说明 13019681
捐赠科研通 3962699
什么是DOI,文献DOI怎么找? 2172183
邀请新用户注册赠送积分活动 1190075
关于科研通互助平台的介绍 1098875