DRGI: Deep Relational Graph Infomax for Knowledge Graph Completion

计算机科学 理论计算机科学 图形 图形数据库 最大熵 图形属性 人工智能 电压图 折线图 计算机网络 盲信号分离 频道(广播)
作者
Shuang Liang,Jie Shao,Dongyang Zhang,Jiasheng Zhang,Bin Cui
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:: 1-1 被引量:7
标识
DOI:10.1109/tkde.2021.3110898
摘要

Recently, many knowledge graph embedding models for knowledge graph completion have been proposed, ranging from the initial translation-based models such as TransE to recent convolutional neural network (CNN) models such as ConvE. However, these models only focus on semantic information of knowledge graph and neglect the natural graph structure information. Although graph convolutional network (GCN)-based models for knowledge graph embedding have been introduced to address this issue, they still suffer from fact incompleteness, resulting in the unconnectedness of knowledge graph. To solve this problem, we propose a novel model called deep relational graph infomax (DRGI) with mutual information (MI) maximization which takes the benefit of complete structure information and semantic information together. Specifically, the proposed DRGI consists of two encoders which are two identical adaptive relational graph attention networks (ARGATs), corresponding to catching semantic information and complete structure information respectively. Our method establishes new state-of-the-art on the standard datasets for knowledge graph completion. In addition, by exploring the complete structure information, DRGI embraces the merits of faster convergence speed over existing methods and better predictive performance for entities with small indegree.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
两张发布了新的文献求助30
刚刚
Mandy完成签到 ,获得积分10
刚刚
waa发布了新的文献求助10
1秒前
科研通AI5应助HJY采纳,获得10
1秒前
wanci应助ZG采纳,获得10
1秒前
汉堡包应助mint采纳,获得10
2秒前
2秒前
258完成签到,获得积分10
3秒前
城南有雾发布了新的文献求助30
3秒前
JamesPei应助风华采纳,获得10
3秒前
star发布了新的文献求助10
3秒前
亮山火马完成签到,获得积分10
4秒前
蓝豆子发布了新的文献求助10
5秒前
余味应助豪士赋采纳,获得10
5秒前
6秒前
waa完成签到,获得积分10
6秒前
爆米花应助胖虎啊采纳,获得10
6秒前
knmno2应助彩色菲鹰采纳,获得10
6秒前
SciGPT应助BQ采纳,获得10
7秒前
小羊转圈圈完成签到,获得积分10
9秒前
10秒前
10秒前
maox1aoxin应助kento采纳,获得50
10秒前
斯文败类应助忘忧采纳,获得10
11秒前
12秒前
13秒前
丘比特应助LL采纳,获得10
13秒前
镜中男人发布了新的文献求助10
13秒前
科研通AI5应助周新运采纳,获得10
13秒前
jqdsg完成签到,获得积分10
14秒前
共享精神应助奔跑的骆驼采纳,获得10
14秒前
14秒前
15秒前
15秒前
大模型应助Maydalian采纳,获得10
15秒前
科研通AI5应助sjh采纳,获得30
15秒前
15秒前
热情的老虎完成签到,获得积分10
15秒前
re发布了新的文献求助50
16秒前
花开富贵发布了新的文献求助10
16秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Functional Polyimide Dielectrics: Structure, Properties, and Applications 450
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795186
求助须知:如何正确求助?哪些是违规求助? 3340148
关于积分的说明 10298847
捐赠科研通 3056613
什么是DOI,文献DOI怎么找? 1677114
邀请新用户注册赠送积分活动 805194
科研通“疑难数据库(出版商)”最低求助积分说明 762391