亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DNAgenie: accurate prediction of DNA-type-specific binding residues in protein sequences

DNA 计算生物学 DNA测序 蛋白质组 单链结合蛋白 杠杆(统计) 序列(生物学) HMG盒 DNA结合蛋白 DNA结合位点 生物 计算机科学 遗传学 机器学习 基因 转录因子 发起人 基因表达
作者
Jian Zhang,Sina Ghadermarzi,Akila Katuwawala,Lukasz Kurgan
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:22 (6) 被引量:9
标识
DOI:10.1093/bib/bbab336
摘要

Efforts to elucidate protein-DNA interactions at the molecular level rely in part on accurate predictions of DNA-binding residues in protein sequences. While there are over a dozen computational predictors of the DNA-binding residues, they are DNA-type agnostic and significantly cross-predict residues that interact with other ligands as DNA binding. We leverage a custom-designed machine learning architecture to introduce DNAgenie, first-of-its-kind predictor of residues that interact with A-DNA, B-DNA and single-stranded DNA. DNAgenie uses a comprehensive physiochemical profile extracted from an input protein sequence and implements a two-step refinement process to provide accurate predictions and to minimize the cross-predictions. Comparative tests on an independent test dataset demonstrate that DNAgenie outperforms the current methods that we adapt to predict residue-level interactions with the three DNA types. Further analysis finds that the use of the second (refinement) step leads to a substantial reduction in the cross predictions. Empirical tests show that DNAgenie's outputs that are converted to coarse-grained protein-level predictions compare favorably against recent tools that predict which DNA-binding proteins interact with double-stranded versus single-stranded DNAs. Moreover, predictions from the sequences of the whole human proteome reveal that the results produced by DNAgenie substantially overlap with the known DNA-binding proteins while also including promising leads for several hundred previously unknown putative DNA binders. These results suggest that DNAgenie is a valuable tool for the sequence-based characterization of protein functions. The DNAgenie's webserver is available at http://biomine.cs.vcu.edu/servers/DNAgenie/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
Fitz完成签到,获得积分10
50秒前
余可馨完成签到,获得积分20
59秒前
山猪吃细糠完成签到 ,获得积分10
1分钟前
貔貅完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
Hcc完成签到 ,获得积分10
2分钟前
2分钟前
爆米花应助勇往直前采纳,获得10
3分钟前
3分钟前
勇往直前发布了新的文献求助10
3分钟前
maggiexjl完成签到,获得积分10
3分钟前
3分钟前
iShine完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
U点东西i发布了新的文献求助10
4分钟前
5分钟前
5分钟前
8567612发布了新的文献求助10
5分钟前
5分钟前
森森完成签到 ,获得积分10
5分钟前
U点东西i发布了新的文献求助10
5分钟前
5分钟前
阳光的凡阳完成签到 ,获得积分10
5分钟前
5分钟前
crown完成签到,获得积分10
5分钟前
5分钟前
U点东西i完成签到,获得积分20
5分钟前
半夏完成签到,获得积分10
6分钟前
galaxy完成签到 ,获得积分10
6分钟前
Tiamo完成签到,获得积分10
6分钟前
6分钟前
小白菜完成签到,获得积分10
6分钟前
6分钟前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Robot-supported joining of reinforcement textiles with one-sided sewing heads 580
Apiaceae Himalayenses. 2 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4091615
求助须知:如何正确求助?哪些是违规求助? 3630356
关于积分的说明 11507571
捐赠科研通 3341852
什么是DOI,文献DOI怎么找? 1836917
邀请新用户注册赠送积分活动 904809
科研通“疑难数据库(出版商)”最低求助积分说明 822574