Evaluating basketball player’s rotation line-ups performance via statistical markov chain modelling

无礼的 篮球 Guard(计算机科学) 马尔可夫链 计算机科学 计量经济学 心理学 统计 运筹学 数学 考古 历史 程序设计语言
作者
Pavlos Kolias,Nikolaos Stavropoulos,Alexandra Papadopoulou,Theodoros Kostakidis
出处
期刊:International Journal of Sports Science & Coaching [SAGE Publishing]
卷期号:17 (1): 178-188 被引量:12
标识
DOI:10.1177/17479541211009083
摘要

Coaches in basketball often need to know how specific rotation line-ups perform in either offense or defense and choose the most efficient formation, according to their specific needs. In this research, a sample of 1131 ball possession phases of Greek Basket League was utilized, in order to estimate the offensive and defensive performance of each formation. Offensive and defensive ratings for each formation were calculated as a function of points scored or received, respectively, over possessions, where possessions were estimated using a multiple regression model. Furthermore, a Markov chain model was implemented to estimate the probabilities of the associated formation’s performance in the long run. The model could allow us to distinguish between overperforming and underperforming formations and revealed the probabilities over the evolution of the game, for each formation to be in a specific rating category. The results indicated that the most dominant formation, in terms of offense, is Point Guard-Point Guard-Small Forward-Power Forward-Center, while defensively schema Point Guard-Shooting Guard-Small Forward-Center-Center had the highest rating. Such results provide information, which could operate as a supplementary tool for the coach’s decisions, related to which rotation line-up patterns are mostly suitable during a basketball game.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
打打应助lucky采纳,获得10
2秒前
一一完成签到,获得积分20
3秒前
罗踩踩发布了新的文献求助10
3秒前
猪猪hero发布了新的文献求助20
5秒前
shenerqing完成签到,获得积分10
5秒前
ironsilica发布了新的文献求助10
8秒前
爆米花应助生动半梅采纳,获得10
9秒前
科研通AI5应助金木木采纳,获得10
11秒前
小蘑菇应助yiyi037118采纳,获得10
12秒前
ccob完成签到,获得积分10
14秒前
积极的夏天完成签到 ,获得积分10
14秒前
14秒前
15秒前
17秒前
JamesPei应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
谈笑间应助科研通管家采纳,获得10
19秒前
lkc发布了新的文献求助10
19秒前
277完成签到 ,获得积分10
19秒前
lucky发布了新的文献求助10
19秒前
丫丫发布了新的文献求助10
20秒前
安静的冰蓝完成签到 ,获得积分10
21秒前
SYLH应助VDC采纳,获得10
22秒前
领导范儿应助昵称采纳,获得10
23秒前
汉堡包应助fan采纳,获得10
23秒前
24秒前
24秒前
25秒前
养猪人完成签到,获得积分10
27秒前
xcz发布了新的文献求助10
28秒前
29秒前
羁绊完成签到,获得积分10
29秒前
babybao发布了新的文献求助10
30秒前
31秒前
31秒前
32秒前
H_dd发布了新的文献求助10
33秒前
李健应助康康采纳,获得10
34秒前
昵称完成签到,获得积分10
34秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808987
求助须知:如何正确求助?哪些是违规求助? 3353695
关于积分的说明 10366556
捐赠科研通 3069920
什么是DOI,文献DOI怎么找? 1685835
邀请新用户注册赠送积分活动 810750
科研通“疑难数据库(出版商)”最低求助积分说明 766320