Dense Hydrogen-Bonding Network Boosts Ionic Conductive Hydrogels with Extremely High Toughness, Rapid Self-Recovery, and Autonomous Adhesion for Human-Motion Detection

材料科学 韧性 复合材料 离子键合 自愈水凝胶 化学工程 高分子化学 离子 化学 工程类 有机化学
作者
Bing Zhang,Xu Zhang,Kening Wan,Jixin Zhu,Jingsan Xu,Chao Zhang,Tianxi Liu
出处
期刊:Research [American Association for the Advancement of Science]
卷期号:2021 被引量:51
标识
DOI:10.34133/2021/9761625
摘要

The construction of ionic conductive hydrogels with high transparency, excellent mechanical robustness, high toughness, and rapid self-recovery is highly desired yet challenging. Herein, a hydrogen-bonding network densification strategy is presented for preparing a highly stretchable and transparent poly(ionic liquid) hydrogel (PAM-r-MVIC) from the perspective of random copolymerization of 1-methyl-3-(4-vinylbenzyl) imidazolium chloride and acrylamide in water. Ascribing to the formation of a dense hydrogen-bonding network, the resultant PAM-r-MVIC exhibited an intrinsically high stretchability (>1000%) and compressibility (90%), fast self-recovery with high toughness (2950 kJ m -3 ), and excellent fatigue resistance with no deviation for 100 cycles. Dissipative particle dynamics simulations revealed that the orientation of hydrogen bonds along the stretching direction boosted mechanical strength and toughness, which were further proved by the restriction of molecular chain movements ascribing to the formation of a dense hydrogen-bonding network from mean square displacement calculations. Combining with high ionic conductivity over a wide temperature range and autonomous adhesion on various surfaces with tailored adhesive strength, the PAM-r-MVIC can readily work as a highly stretchable and healable ionic conductor for a capacitive/resistive bimodal sensor with self-adhesion, high sensitivity, excellent linearity, and great durability. This study might provide a new path of designing and fabricating ionic conductive hydrogels with high mechanical elasticity, high toughness, and excellent fatigue resilience for skin-inspired ionic sensors in detecting complex human motions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高大的水壶完成签到,获得积分10
刚刚
虚心的仙人掌完成签到,获得积分0
刚刚
fyjlfy发布了新的文献求助10
1秒前
2秒前
2秒前
keen完成签到 ,获得积分10
2秒前
动听的弼完成签到 ,获得积分10
3秒前
nine完成签到 ,获得积分10
3秒前
jiaojiao完成签到 ,获得积分10
3秒前
感动满天完成签到,获得积分10
4秒前
4秒前
永溺深海的猫完成签到,获得积分10
5秒前
Billy完成签到,获得积分10
5秒前
嘟嘟完成签到 ,获得积分10
5秒前
zhaosh完成签到,获得积分10
6秒前
研友_ZzrwqZ发布了新的文献求助10
7秒前
卡农完成签到,获得积分10
7秒前
kyz完成签到,获得积分10
8秒前
8秒前
852应助田...采纳,获得10
9秒前
123发布了新的文献求助10
9秒前
luria完成签到,获得积分10
10秒前
琪琪完成签到,获得积分10
10秒前
徐哈哈完成签到 ,获得积分10
10秒前
ttyhtg完成签到,获得积分10
10秒前
于生有你完成签到,获得积分10
11秒前
谢花花完成签到 ,获得积分10
12秒前
12秒前
小熊饼干完成签到,获得积分10
12秒前
Earnestlee完成签到,获得积分10
12秒前
zjzjzjzjzj完成签到 ,获得积分10
14秒前
晓先森完成签到,获得积分10
14秒前
CAOHOU应助高大的水壶采纳,获得10
15秒前
瞿访云完成签到,获得积分10
15秒前
郭红燕发布了新的文献求助10
15秒前
15秒前
小二郎应助黑煤球采纳,获得30
16秒前
17秒前
17秒前
ange完成签到,获得积分10
17秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4061515
求助须知:如何正确求助?哪些是违规求助? 3600186
关于积分的说明 11432873
捐赠科研通 3323783
什么是DOI,文献DOI怎么找? 1827470
邀请新用户注册赠送积分活动 897942
科研通“疑难数据库(出版商)”最低求助积分说明 818774