A hybrid computational intelligence approach for structural damage detection using marine predator algorithm and feedforward neural networks

粒子群优化 水准点(测量) 算法 前馈神经网络 计算机科学 混合算法(约束满足) 人工神经网络 结构健康监测 计算智能 前馈 群体智能 遗传算法 人工智能 工程类 机器学习 控制工程 概率逻辑 约束逻辑程序设计 约束满足 大地测量学 结构工程 地理
作者
Long Viet Ho,Duong Huong Nguyen,Mohsen Mousavi,Guido De Roeck,Thanh Bui-Tien,Amir H. Gandomi,Magd Abdel Wahab
出处
期刊:Computers & Structures [Elsevier]
卷期号:252: 106568-106568 被引量:91
标识
DOI:10.1016/j.compstruc.2021.106568
摘要

Finite element (FE) based structural health monitoring (SHM) algorithms seek to update structural damage indices through solving an optimisation problem in which the difference between the response of the real structure and a corresponding FE model to some excitation force is minimised. These techniques, therefore, exploit advanced optimisation algorithms to alleviate errors stemming from the lack of information or the use of highly noisy measured responses. This study proposes an effective approach for damage detection by using a recently developed novel swarm intelligence algorithm, i.e. the marine predator algorithm (MPA). In the proposed approach, optimal foraging strategy and marine memory are employed to improve the learning ability of feedforward neural networks. After training, the hybrid feedforward neural networks and marine predator algorithm, MPAFNN, produces the best combination of connection weights and biases. These weights and biases then are re-input to the networks for prediction. Firstly, the classification capability of the proposed algorithm is investigated in comparison with some well-known optimization algorithms such as particle swarm optimization (PSO), gravitational search algorithm (GSA), hybrid particle swarm optimization-gravitational search algorithm (PSOGSA), and grey wolf optimizer (GWO) via four classification benchmark problems. The superior and stable performance of MPAFNN proves its effectiveness. Then, the proposed method is applied for damage identification of three numerical models, i.e. a simply supported beam, a two-span continuous beam, and a laboratory free-free beam by using modal flexibility indices. The obtained results reveal the feasibility of the proposed approach in damage identification not only for different structures with single damage and multiple damage, but also considering noise effect.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苗条的元风完成签到,获得积分10
1秒前
两个我发布了新的文献求助10
2秒前
4秒前
于大本事完成签到,获得积分10
6秒前
8秒前
yz完成签到,获得积分10
10秒前
李健的小迷弟应助kds采纳,获得10
11秒前
ys1111xiao完成签到,获得积分10
12秒前
发发发完成签到 ,获得积分10
18秒前
一与余完成签到,获得积分10
22秒前
蔡从安发布了新的文献求助10
26秒前
丰富南松完成签到,获得积分10
27秒前
sdkumamon完成签到 ,获得积分10
28秒前
32秒前
可爱的函函应助hwezhu采纳,获得10
33秒前
10完成签到,获得积分10
37秒前
38秒前
38秒前
38秒前
38秒前
1825822526发布了新的文献求助10
38秒前
38秒前
38秒前
贺贺完成签到,获得积分10
38秒前
38秒前
38秒前
39秒前
41秒前
42秒前
烟花应助科研通管家采纳,获得20
42秒前
脑洞疼应助科研通管家采纳,获得10
42秒前
NexusExplorer应助科研通管家采纳,获得10
42秒前
面壁思过应助科研通管家采纳,获得10
42秒前
42秒前
Wanfeng应助科研通管家采纳,获得200
42秒前
42秒前
44秒前
hwezhu发布了新的文献求助10
47秒前
今后应助小钱钱采纳,获得10
47秒前
研友_VZG7GZ应助1825822526采纳,获得10
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Signals, Systems, and Signal Processing 880
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Discrete-Time Signals and Systems 510
Clinical Efficacy of the Hydrogel Patch Containing Loxoprofen Sodium (LX-A) on Osteoarthritis of the Knee-A Randomized, Open Label Clinical Study with Ketoprofen Patch-(Phase III Therapeutic Confirmatory Study) 410
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5843371
求助须知:如何正确求助?哪些是违规求助? 6180814
关于积分的说明 15611599
捐赠科研通 4960279
什么是DOI,文献DOI怎么找? 2674307
邀请新用户注册赠送积分活动 1619125
关于科研通互助平台的介绍 1574340