A hybrid computational intelligence approach for structural damage detection using marine predator algorithm and feedforward neural networks

粒子群优化 水准点(测量) 算法 前馈神经网络 计算机科学 混合算法(约束满足) 人工神经网络 结构健康监测 计算智能 前馈 群体智能 遗传算法 人工智能 工程类 机器学习 控制工程 概率逻辑 约束逻辑程序设计 约束满足 大地测量学 结构工程 地理
作者
Long Viet Ho,Duong Huong Nguyen,Mohsen Mousavi,Guido De Roeck,Thanh Bui-Tien,Amir H. Gandomi,Magd Abdel Wahab
出处
期刊:Computers & Structures [Elsevier]
卷期号:252: 106568-106568 被引量:91
标识
DOI:10.1016/j.compstruc.2021.106568
摘要

Finite element (FE) based structural health monitoring (SHM) algorithms seek to update structural damage indices through solving an optimisation problem in which the difference between the response of the real structure and a corresponding FE model to some excitation force is minimised. These techniques, therefore, exploit advanced optimisation algorithms to alleviate errors stemming from the lack of information or the use of highly noisy measured responses. This study proposes an effective approach for damage detection by using a recently developed novel swarm intelligence algorithm, i.e. the marine predator algorithm (MPA). In the proposed approach, optimal foraging strategy and marine memory are employed to improve the learning ability of feedforward neural networks. After training, the hybrid feedforward neural networks and marine predator algorithm, MPAFNN, produces the best combination of connection weights and biases. These weights and biases then are re-input to the networks for prediction. Firstly, the classification capability of the proposed algorithm is investigated in comparison with some well-known optimization algorithms such as particle swarm optimization (PSO), gravitational search algorithm (GSA), hybrid particle swarm optimization-gravitational search algorithm (PSOGSA), and grey wolf optimizer (GWO) via four classification benchmark problems. The superior and stable performance of MPAFNN proves its effectiveness. Then, the proposed method is applied for damage identification of three numerical models, i.e. a simply supported beam, a two-span continuous beam, and a laboratory free-free beam by using modal flexibility indices. The obtained results reveal the feasibility of the proposed approach in damage identification not only for different structures with single damage and multiple damage, but also considering noise effect.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
糯米饭发布了新的文献求助10
刚刚
1秒前
2秒前
黄玲发布了新的文献求助30
5秒前
多情寄瑶应助风清扬采纳,获得30
5秒前
8秒前
晨丶完成签到,获得积分10
9秒前
瘦瘦雁蓉发布了新的文献求助10
10秒前
10秒前
11秒前
12秒前
xky3371发布了新的文献求助10
13秒前
露露完成签到 ,获得积分10
21秒前
久旱逢甘霖完成签到 ,获得积分10
21秒前
顾矜应助牙牙采纳,获得10
25秒前
是Tt呀发布了新的文献求助10
25秒前
过时的糖豆完成签到,获得积分10
26秒前
Solitude发布了新的文献求助10
30秒前
科研通AI6.2应助赢赢采纳,获得10
30秒前
31秒前
妮可发布了新的文献求助10
34秒前
lu发布了新的文献求助10
35秒前
牙牙发布了新的文献求助10
37秒前
11发布了新的文献求助10
37秒前
英俊qiang应助wrs采纳,获得10
37秒前
可爱的函函应助冷酷傲易采纳,获得10
41秒前
yan关闭了yan文献求助
42秒前
43秒前
45秒前
46秒前
47秒前
滴追发布了新的文献求助10
50秒前
51秒前
科研通AI6.2应助lu采纳,获得10
53秒前
句号完成签到 ,获得积分10
54秒前
54秒前
冷酷傲易发布了新的文献求助10
55秒前
上官发布了新的文献求助10
55秒前
55秒前
YananQiao发布了新的文献求助10
59秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Signals, Systems, and Signal Processing 880
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Discrete-Time Signals and Systems 510
Clinical Efficacy of the Hydrogel Patch Containing Loxoprofen Sodium (LX-A) on Osteoarthritis of the Knee-A Randomized, Open Label Clinical Study with Ketoprofen Patch-(Phase III Therapeutic Confirmatory Study) 410
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5843469
求助须知:如何正确求助?哪些是违规求助? 6182030
关于积分的说明 15611872
捐赠科研通 4960421
什么是DOI,文献DOI怎么找? 2674356
邀请新用户注册赠送积分活动 1619178
关于科研通互助平台的介绍 1574392