细胞生物学
生物
磷酸化
斯塔斯明
诺可达唑
内化
免疫沉淀
细胞骨架
细胞
免疫学
生物化学
抗体
作者
Wei Xie,Mingzhen Chen,Zhaodong Zhai,Hongjie Li,Ting Song,Yigao Zhu,Dan Dong,Peng Zhou,Liangwei Duan,You Zhang,Dengwen Li,Xinqi Liu,Jun Zhou,Min Liu
标识
DOI:10.1016/j.jbc.2021.100644
摘要
Exposure of mucosal epithelial cells to the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp120 is known to disrupt epithelial cell junctions by impairing stathmin-mediated microtubule depolymerization. However, the pathological significance of this process and its underlying molecular mechanism remain unclear. Here we show that treatment of epithelial cells with pseudotyped HIV-1 viral particles or recombinant gp120 protein results in the activation of protein kinase G 1 (PKG1). Examination of epithelial cells by immunofluorescence microscopy reveals that PKG1 activation mediates the epithelial barrier damage upon HIV-1 exposure. Immunoprecipitation experiments show that PKG1 interacts with stathmin and phosphorylates stathmin at serine 63 in the presence of gp120. Immunoprecipitation and immunofluorescence microscopy further demonstrate that PKG1-mediated phosphorylation of stathmin promotes its autophagic degradation by enhancing the interaction between stathmin and the autophagy adaptor protein p62. Collectively, these results suggest that HIV-1 exposure exploits the PKG1/stathmin axis to affect the microtubule cytoskeleton and thereby perturbs epithelial cell junctions. Our findings reveal a novel molecular mechanism by which exposure to HIV-1 increases epithelial permeability, which has implications for the development of effective strategies to prevent mucosal HIV-1 transmission.
科研通智能强力驱动
Strongly Powered by AbleSci AI