An enhanced fast non-dominated solution sorting genetic algorithm for multi-objective problems

分类 数学优化 计算机科学 排序算法 遗传算法 算法 数学 机器学习
作者
Wu Deng,Xiaoxiao Zhang,Yongquan Zhou,Yi Liu,Xiangbing Zhou,Huiling Chen,Huimin Zhao
出处
期刊:Information Sciences [Elsevier BV]
卷期号:585: 441-453 被引量:361
标识
DOI:10.1016/j.ins.2021.11.052
摘要

Multi-modal multi-objective optimization problem (MMOPs) has attracted more and more attention in evolutionary computing recently. It is not easy to solve these problems using the existing evolutionary algorithms. The non-dominated solution sorting genetic algorithm (NSGA-II) has poor PS distribution and convergence. In this paper, an enhanced fast NSGA-II based on a special congestion strategy and adaptive crossover strategy, namely ASDNSGA-II is proposed. In the ASDNSGA-II, the strategy with a special congestion degree is used to improve the selection strategy. Then a new adaptive crossover strategy is designed by evaluating the advantages and disadvantages of the SBX crossover strategy with the ability to solve high dimensions and the BLX-α with the ability of Pareto solution to produce offspring solutions. These can ensure the generation of offspring solutions around individuals with large crowding degrees and balance the convergence and diversity of decision space and object space. It can improve PS distribution and convergence and maintain PF precision. Eight functions of MMF1-MMF8 from the CEC2020 are selected to prove the effectiveness of the ASDNSGA-II. By comparing several latest multi-modal multi-objective evolutionary algorithms, the results show that the ASDNSGA-II can effectively find the global Pareto solution set and improve the distribution and convergence of PS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
薛建伟完成签到 ,获得积分10
2秒前
666发布了新的文献求助10
5秒前
雪雪完成签到 ,获得积分10
7秒前
罗中翠完成签到,获得积分10
8秒前
吃书的猪完成签到,获得积分10
8秒前
9秒前
12秒前
韭菜发布了新的文献求助10
13秒前
碧蓝的以彤完成签到,获得积分10
16秒前
Forizix发布了新的文献求助10
16秒前
wang发布了新的文献求助10
16秒前
万能图书馆应助mazhihao采纳,获得10
17秒前
852应助韭菜采纳,获得10
17秒前
18秒前
炙热的皮皮虾给炙热的皮皮虾的求助进行了留言
20秒前
wang完成签到,获得积分20
21秒前
3542002发布了新的文献求助10
25秒前
一一应助橘如采纳,获得10
25秒前
HEIKU应助温柔又莲采纳,获得10
26秒前
LDDDGR发布了新的文献求助10
26秒前
29秒前
Bear完成签到 ,获得积分10
33秒前
Alex完成签到,获得积分20
33秒前
33秒前
34秒前
鲸医完成签到,获得积分10
36秒前
幸运星完成签到,获得积分10
37秒前
Super齐完成签到,获得积分10
38秒前
鲸医发布了新的文献求助10
39秒前
kk完成签到,获得积分10
40秒前
SciGPT应助务实的听筠采纳,获得10
40秒前
40秒前
41秒前
Super齐发布了新的文献求助10
44秒前
mazhihao发布了新的文献求助10
45秒前
snsnf发布了新的文献求助10
46秒前
务实的听筠完成签到,获得积分20
46秒前
破晓完成签到,获得积分10
47秒前
大个应助hana采纳,获得10
48秒前
温柔又莲完成签到,获得积分10
49秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801436
求助须知:如何正确求助?哪些是违规求助? 3347178
关于积分的说明 10332370
捐赠科研通 3063467
什么是DOI,文献DOI怎么找? 1681747
邀请新用户注册赠送积分活动 807681
科研通“疑难数据库(出版商)”最低求助积分说明 763864