Novel Discriminant Locality Preserving Projection Integrated With Monte Carlo Sampling for Fault Diagnosis

降维 人工智能 模式识别(心理学) 蒙特卡罗方法 线性判别分析 特征提取 计算机科学 主成分分析 算法 数学 统计
作者
Yan-Lin He,Kun Li,Lilong Liang,Yuan Xu,Qunxiong Zhu
出处
期刊:IEEE Transactions on Reliability [Institute of Electrical and Electronics Engineers]
卷期号:72 (1): 166-176 被引量:8
标识
DOI:10.1109/tr.2021.3115108
摘要

In complex industrial processes, the technique of fault diagnosis has been playing an increasingly considerable role in ensuring the safety of life and property. Unfortunately, the process data of complex industrial processes have the features of high dimension. Feature extraction from high-dimensional data is promising to coping with the fault data with high dimension. Recently, one of manifold learning methods named discriminant locality preserving projection achieves excellent performance in feature extraction. However, the performance of discriminant locality preserving projection (DLPP) is subject to the problem of matrix decomposition in the denominator of the objection function caused by the small sample size (SSS) issue. To overcome this limitation, novel DLPP integrated with Monte Carlo sampling is proposed to enhance the performance of feature extraction through dimensionality reduction. In the proposed MC-DLPP, Monte Carlo sampling is first utilized to generate fault samples for each fault type. With the aid of the virtually generated fault samples, the rank of the matrix in the denominator of the objection function of DLPP increases, thus well addressing the SSS problem. The Softmax classifier is used for fault diagnosis. To test the performance of the improved DLPP-based fault diagnosis, case studies using the Tennessee Eastman process are carried out. Simulation results confirm the presented MC-DLPP achieves superior accuracy in fault diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhangfuchao发布了新的文献求助10
1秒前
驭剑士发布了新的文献求助10
2秒前
之组长了完成签到 ,获得积分10
2秒前
2秒前
FashionBoy应助北辰采纳,获得10
4秒前
4秒前
李海鹏关注了科研通微信公众号
5秒前
tjzhaoll发布了新的文献求助10
5秒前
不准上学完成签到 ,获得积分10
5秒前
CodeCraft应助后来采纳,获得10
6秒前
congguitar完成签到,获得积分10
7秒前
slj发布了新的文献求助10
7秒前
7秒前
8秒前
研友_VZG7GZ应助song采纳,获得10
9秒前
9秒前
科研通AI5应助小宋采纳,获得10
9秒前
大力云朵发布了新的文献求助10
10秒前
10秒前
和谐如容发布了新的文献求助20
10秒前
朴实一曲应助王子采纳,获得10
11秒前
SciGPT应助hujie采纳,获得10
15秒前
贺兰发布了新的文献求助10
15秒前
xl²-B完成签到,获得积分10
15秒前
16秒前
机灵蜡烛应助nylon采纳,获得10
19秒前
19秒前
zz完成签到,获得积分10
19秒前
magneto完成签到,获得积分10
20秒前
小宋发布了新的文献求助10
22秒前
song发布了新的文献求助10
23秒前
kingwill举报muzi求助涉嫌违规
25秒前
26秒前
kkk发布了新的文献求助10
26秒前
一百度黑发布了新的文献求助10
30秒前
科研通AI5应助科研通管家采纳,获得10
31秒前
Hello应助科研通管家采纳,获得10
31秒前
Orange应助科研通管家采纳,获得10
31秒前
31秒前
不倦应助科研通管家采纳,获得10
31秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797499
求助须知:如何正确求助?哪些是违规求助? 3342865
关于积分的说明 10313681
捐赠科研通 3059571
什么是DOI,文献DOI怎么找? 1678957
邀请新用户注册赠送积分活动 806288
科研通“疑难数据库(出版商)”最低求助积分说明 763046