Mechanism Study of Unsaturated Tripropargyl Phosphate as an Efficient Electrolyte Additive Forming Multifunctional Interphases in Lithium Ion and Lithium Metal Batteries

电解质 材料科学 锂(药物) 磷酸盐 金属锂 离子 化学工程 电化学 磷酸铁锂 金属 无机化学 电极 化学 有机化学 冶金 物理化学 内分泌学 工程类 医学
作者
Yunxian Qian,Yuanyuan Kang,Shiguang Hu,Qiao Shi,Qun Chen,Xiwu Tang,Yinglin Xiao,Huajun Zhao,Guangfu Luo,Kang Xu,Yonghong Deng
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:12 (9): 10443-10451 被引量:60
标识
DOI:10.1021/acsami.9b21605
摘要

Electrolytes in modern Li ion batteries (LIBs) rely on additives of various structures to generate key interphasial chemistries needed for desired performances, although how these additives operate in battery environments remains little understood. Meanwhile, these traditional additives face increasing challenges from emerging battery chemistries, especially those based on the nickel cathode (Ni ≥ 50%) or the metallic lithium anode. In this work, we report a new additive structure with the highest unsaturation degree known so far along with the in-depth understanding of its breakdown mechanism on those aggressive electrode surfaces. Tripropargyl phosphate (TPP) containing three carbon–carbon triple bonds was found to form dense and protective interphases on both NMC532 cathode as well as graphitic and metallic lithium anodes, leading to significant improvements in performances of both LIBs and lithium metal batteries (LMBs). Comprehensive characterizations together with calculations reveal how the unsaturation functionalities of TPP interact with these electrode chemistries and establish interphases that inhibit gas generation, suppress lithium dendrite growth, and prevent transition metal ion dissolution and deposition on the anode surface. The correlation established among the additive structure, interphasial chemistries, and cell performance will doubtlessly guide us in designing the electrolytes with atomistic precision for future battery chemistries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助科研通管家采纳,获得10
刚刚
曦子曦子应助科研通管家采纳,获得10
1秒前
lalala应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
想吃榴莲完成签到,获得积分10
1秒前
lalala应助科研通管家采纳,获得10
1秒前
打打应助科研通管家采纳,获得10
1秒前
1秒前
lalala应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
2秒前
lalala应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
所所应助科研通管家采纳,获得10
2秒前
2秒前
eric888应助科研通管家采纳,获得50
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
Salut完成签到,获得积分10
4秒前
雾失楼台发布了新的文献求助30
4秒前
5秒前
5秒前
5秒前
于林渤发布了新的文献求助10
5秒前
风子发布了新的文献求助10
6秒前
YXH发布了新的文献求助10
6秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
城市流域产汇流机理及其驱动要素研究—以北京市为例 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3861610
求助须知:如何正确求助?哪些是违规求助? 3404048
关于积分的说明 10637934
捐赠科研通 3127167
什么是DOI,文献DOI怎么找? 1724586
邀请新用户注册赠送积分活动 830539
科研通“疑难数据库(出版商)”最低求助积分说明 779251