已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Using Kriging incorporated with wind direction to investigate ground-level PM2.5 concentration

克里金 均方误差 标准差 插值(计算机图形学) 多元插值 风速 数学 反距离权重法 统计 风向 高斯分布 变异函数 气象学 环境科学 计算机科学 地理 双线性插值 动画 计算机图形学(图像) 物理 量子力学
作者
Huang Zhang,Yu Zhan,Jiayu Li,Chun Ying Chao,Qianfeng Liu,Wei Wang,Shuangqing Jia,Lin Ma,Pratim Biswas
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:751: 141813-141813 被引量:33
标识
DOI:10.1016/j.scitotenv.2020.141813
摘要

Conventional interpolation methods, such as spatial averaging, nearest neighbor, inverse distance weight and ordinary Kriging (OK); for estimating the spatial distribution of ground-level particulate matter (PM) data, do not account for the wind direction for estimating the spatial distribution of PM2.5. In this work, an interpolation algorithm, Win-OK accounting for the wind direction, is developed. In contrast to ordinary Kriging where all locations (irrespective of the wind direction) in the vicinity of a site is considered, the new algorithm (Win-OK) predicts the value at a certain location based on the measured values at locations upwind as determined by the wind direction. This new methodology, Win-OK is validated by applying it to analyze the hourly spatial distribution of ground-level PM2.5 concentrations during Chinese New Year and Chinese National Day in 2017 in Xinxiang city, China. The performance of OK and Win-OK are compared by using them to build PM2.5 concentration heat-maps. A "leave-one-out" cross validation methodology is used to calculate the root-mean-square error (RMSE) and standard deviation for evaluating both algorithms. The results show that OK sometimes gives an extremely high RMSE value using a Gaussian semi-variance model, and the standard deviation significantly deviates from the measured values. Win-OK was found to more accurately predict the PM2.5 spatial distribution in a specific sector. The performance of Win-OK is more stable than OK as established by comparing the calculated RMSE and standard deviation from predictions of both algorithms. Win-OK with a spherical semi-variance model is the most accurate method investigated here for deriving the spatial distribution of ground-level PM2.5. The new algorithm developed here could improve the prediction accuracy of PM2.5 spatial distribution by considering the effect of wind direction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丰富的绮波完成签到 ,获得积分10
刚刚
Eason小川发布了新的文献求助200
刚刚
小黑板完成签到,获得积分10
3秒前
LELE完成签到 ,获得积分10
6秒前
闪闪香菇完成签到,获得积分10
8秒前
Snow完成签到 ,获得积分10
14秒前
AireenBeryl531应助诗亭采纳,获得10
14秒前
二十七完成签到 ,获得积分10
15秒前
赘婿应助坦率迎海zzh采纳,获得10
16秒前
顾矜应助坦率迎海zzh采纳,获得10
16秒前
Ivy应助wzz采纳,获得20
19秒前
罗rr完成签到 ,获得积分10
24秒前
24秒前
JD完成签到 ,获得积分10
25秒前
赘婿应助夏天采纳,获得10
26秒前
29秒前
淡淡的甜发布了新的文献求助10
29秒前
man完成签到 ,获得积分10
31秒前
dimples完成签到 ,获得积分10
35秒前
梁皮儿发布了新的文献求助10
36秒前
fox完成签到 ,获得积分10
36秒前
天天快乐应助tzjz_zrz采纳,获得10
38秒前
罗马没有马完成签到 ,获得积分10
41秒前
So完成签到 ,获得积分10
42秒前
星辰大海应助科研通管家采纳,获得10
44秒前
Owen应助科研通管家采纳,获得10
44秒前
科研通AI5应助科研通管家采纳,获得10
44秒前
azhou176完成签到,获得积分10
45秒前
胡图图完成签到 ,获得积分10
45秒前
蹇蹇完成签到 ,获得积分10
48秒前
49秒前
笑点低的悒完成签到 ,获得积分10
49秒前
51秒前
QiongYin_123完成签到 ,获得积分10
52秒前
tzjz_zrz发布了新的文献求助10
53秒前
恶恶么v完成签到,获得积分10
53秒前
认真以寒完成签到,获得积分10
55秒前
Sure发布了新的文献求助10
56秒前
yingying完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845393
求助须知:如何正确求助?哪些是违规求助? 3387703
关于积分的说明 10550352
捐赠科研通 3108399
什么是DOI,文献DOI怎么找? 1712551
邀请新用户注册赠送积分活动 824474
科研通“疑难数据库(出版商)”最低求助积分说明 774824