Clinical Evaluation of a Deep Learning Model for Segmentation of Nodal Clinical Target Volumes in Breast Cancer Radiotherapy

医学 分割 放射肿瘤学家 乳腺癌 放射治疗 卷积神经网络 医学物理学 人工智能 癌症 放射科 计算机科学 内科学
作者
P. Buelens,Siri Willems,Liesbeth Vandewinckele,Wouter Crijns,Frederik Maes,Caroline Weltens
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier BV]
卷期号:108 (3): S101-S102 被引量:1
标识
DOI:10.1016/j.ijrobp.2020.07.2279
摘要

Precise segmentation of clinical target volumes (CTV) in breast cancer is indispensable for state-of-the art radiotherapy. Despite international guidelines, significant intra- and interobserver variability exists, potentially negatively impacting treatment outcomes. The aim of this study is to evaluate accuracy and efficiency of segmentation of nodal CTVs in planning CT images of breast cancer patients performed by a 3D convolutional neural network (CNN) compared to the manual process. An expert radiation oncologist (RO) segmented 6 different nodal CTVs (levels IV through I, Rotter’s space and the Internal Mammary Nodes) according to international guidelines in 150 breast cancer patients. This data was used to create, train and cross-validate the CNN. The network's performance was further clinically evaluated using a test set of 20 patients. In addition to the expert RO, a sample of 5 resident ROs active in daily clinical practice each performed manual segmentation of 4 patients in the test set and were blinded for the CTVs generated by the CNN. Quantitative analysis of CTV segmentation by the CNN using Dice Similarity Coefficient (DSC) was performed on the test set, using CTVs generated by the expert RO as ground truth. Qualitative analysis for accuracy was performed using a predefined checklist with 34 possible major and 42 possible minor guideline deviations (i.e. errors against anatomical boundaries) for the 6 CTVs combined. Results of the manual process were then compared to the results of the output generated by the CNN. Efficiency was assessed by comparing the time needed to correct CTVs generated by the CNN and time needed for manual segmentation. Mean DSC over all nodal levels generated by the CNN was 0.73 with a standard deviation of 0.07. Qualitative scoring of accuracy of the CNN output showed an absolute decrease of 8.35% in major guideline deviations (23.15% to 14.80%) and an absolute decrease of 14.48% in minor guideline deviations (28.78% to 14.30%) when compared to manually generated volumes. The majority (71%) of guideline deviations in the test set of the CNN consisted of errors in cranial or caudal margins. For the CNN output, the mean correction time was 11 minutes. This was 24 minutes shorter in comparison to the mean time required for manual segmentation (35 minutes). The CNN outperformed ROs for segmentation of nodal CTVs with regard to major and minor deviations from guidelines. Furthermore, the time required to acquire these CTVs decreased significantly. The majority of remaining guideline deviations in target volumes predicted by the CNN consists of errors in the cranial and caudal margins. This study is the first to evaluate the role of deep learning in nodal CTV definition in breast cancer radiotherapy, proving its potential to further increase uniformity and efficacy in the segmentation process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lierikafei发布了新的文献求助10
1秒前
欢呼的冰兰完成签到,获得积分10
1秒前
粥粥完成签到,获得积分10
3秒前
星辰大海应助陈chq采纳,获得10
3秒前
自觉寄文完成签到,获得积分10
4秒前
爱困斯坦发布了新的文献求助10
4秒前
羊咩咩哒发布了新的文献求助10
5秒前
稳重发布了新的文献求助10
5秒前
7秒前
在水一方应助苗条丹南采纳,获得10
9秒前
515完成签到,获得积分10
11秒前
希望天下0贩的0应助b_wasky采纳,获得10
12秒前
茹果发布了新的文献求助10
12秒前
12秒前
自信的泥猴桃关注了科研通微信公众号
14秒前
16秒前
19秒前
19秒前
羊咩咩哒完成签到,获得积分10
19秒前
19秒前
科研通AI5应助辣辣采纳,获得10
20秒前
Apple发布了新的文献求助10
22秒前
慕青应助自觉寄文采纳,获得10
22秒前
单薄灵松完成签到,获得积分10
22秒前
Jamie关注了科研通微信公众号
22秒前
22秒前
寻北意发布了新的文献求助20
24秒前
24秒前
Bao发布了新的文献求助30
24秒前
陈chq发布了新的文献求助10
25秒前
影像大侠完成签到,获得积分10
26秒前
27秒前
27秒前
27秒前
文艺裘发布了新的文献求助10
28秒前
515发布了新的文献求助10
29秒前
30秒前
31秒前
cherish发布了新的文献求助10
31秒前
33秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
科学教育中的科学本质 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806853
求助须知:如何正确求助?哪些是违规求助? 3351618
关于积分的说明 10354910
捐赠科研通 3067447
什么是DOI,文献DOI怎么找? 1684519
邀请新用户注册赠送积分活动 809788
科研通“疑难数据库(出版商)”最低求助积分说明 765635