An Analysis of QSAR Research Based on Machine Learning Concepts

数量结构-活动关系 机器学习 计算机科学 人工智能 分类 适用范围 生化工程 工程类
作者
Mohammad Reza Keyvanpour,Mehrnoush Barani Shirzad
出处
期刊:Current Drug Discovery Technologies [Bentham Science Publishers]
卷期号:18 (1): 17-30 被引量:58
标识
DOI:10.2174/1570163817666200316104404
摘要

Quantitative Structure-Activity Relationship (QSAR) is a popular approach developed to correlate chemical molecules with their biological activities based on their chemical structures. Machine learning techniques have proved to be promising solutions to QSAR modeling. Due to the significant role of machine learning strategies in QSAR modeling, this area of research has attracted much attention from researchers. A considerable amount of literature has been published on machine learning based QSAR modeling methodologies whilst this domain still suffers from lack of a recent and comprehensive analysis of these algorithms. This study systematically reviews the application of machine learning algorithms in QSAR, aiming to provide an analytical framework. For this purpose, we present a framework called 'ML-QSAR'. This framework has been designed for future research to: a) facilitate the selection of proper strategies among existing algorithms according to the application area requirements, b) help to develop and ameliorate current methods and c) providing a platform to study existing methodologies comparatively. In ML-QSAR, first a structured categorization is depicted which studied the QSAR modeling research based on machine models. Then several criteria are introduced in order to assess the models. Finally, inspired by aforementioned criteria the qualitative analysis is carried out.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
sy发布了新的文献求助10
2秒前
翁若翠发布了新的文献求助10
4秒前
pahnky发布了新的文献求助30
4秒前
初遇之时最暖完成签到,获得积分10
7秒前
pluto应助安静小懒猪采纳,获得10
10秒前
10秒前
10秒前
哇呀呀完成签到 ,获得积分10
11秒前
Yanfei发布了新的文献求助10
11秒前
12秒前
qinzx完成签到,获得积分10
13秒前
hani完成签到,获得积分10
13秒前
15秒前
辛勤又蓝发布了新的文献求助10
16秒前
隐形曼青应助joleisalau采纳,获得10
18秒前
saker发布了新的文献求助10
18秒前
20秒前
虾米完成签到,获得积分10
21秒前
顾矜应助Jemezs采纳,获得10
22秒前
zho应助小杨采纳,获得10
22秒前
提拉米草完成签到,获得积分10
23秒前
bgerivers发布了新的文献求助10
24秒前
26秒前
科目三应助DADA采纳,获得20
27秒前
27秒前
充电宝应助提拉米草采纳,获得10
27秒前
31秒前
Lee发布了新的文献求助10
32秒前
半柚发布了新的文献求助10
33秒前
34秒前
wangnankai发布了新的文献求助10
36秒前
zpl发布了新的文献求助10
37秒前
38秒前
善学以致用应助1111采纳,获得10
39秒前
40秒前
Lee完成签到,获得积分20
40秒前
赘婿应助wangnankai采纳,获得10
41秒前
42秒前
42秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778211
求助须知:如何正确求助?哪些是违规求助? 3323865
关于积分的说明 10216275
捐赠科研通 3039094
什么是DOI,文献DOI怎么找? 1667782
邀请新用户注册赠送积分活动 798383
科研通“疑难数据库(出版商)”最低求助积分说明 758366