Evaluation of CLDAS and GLDAS Datasets for Near-Surface Air Temperature over Major Land Areas of China

环境科学 数据同化 气候学 水圈 气候变化 中国 气象学 降水 航程(航空) 空间分布 遥感 地理 生物圈 地质学 生态学 海洋学 考古 生物 材料科学 复合材料
作者
Shuai Han,Buchun Liu,Chunxiang Shi,Yuan Liu,Meijuan Qiu,Shuai Sun
出处
期刊:Sustainability [Multidisciplinary Digital Publishing Institute]
卷期号:12 (10): 4311-4311 被引量:60
标识
DOI:10.3390/su12104311
摘要

As one of the most principal meteorological factors to affect global climate change and human sustainable development, temperature plays an important role in biogeochemical and hydrosphere cycle. To date, there are a wide range of temperature data sources and only a detailed understanding of the reliability of these datasets can help us carry out related research. In this study, the hourly and daily near-surface air temperature observations collected at national automatic weather stations (NAWS) in China were used to compare with the China Meteorological Administration (CMA) Land Data Assimilation System (CLDAS) and the Global Land Data Assimilation System (GLDAS), both of which were developed by using the advanced multi-source data fusion technology. Results are as follows. (1) The spatial and temporal variations of the near-surface air temperature agree well between CLDAS and GLDAS over major land of China, except that spatial details in high mountainous areas were not sufficiently displayed in GLDAS; (2) The near-surface air temperature of CLDAS were more significantly correlated with observations than that of GLDAS, but more caution is necessary when using the data in mountain areas as the accuracy of the datasets gradually decreases with increasing altitude; (3) CLDAS can better illustrate the distribution of areas of daily maximum above 35 °C and help to monitor high temperature weather. The main conclusion of this study is that CLDAS near-surface air temperature has a higher reliability in China, which is very important for the study of climate change and sustainable development in East Asia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助黑魔仙采纳,获得10
刚刚
Ahan发布了新的文献求助10
刚刚
汉堡包应助yyyjx采纳,获得10
刚刚
顺利秋灵完成签到,获得积分20
1秒前
1秒前
小贝完成签到,获得积分10
1秒前
2秒前
内向翰完成签到,获得积分10
3秒前
long完成签到,获得积分10
4秒前
默默蓝完成签到,获得积分20
4秒前
aoaoao发布了新的文献求助10
5秒前
小二郎应助研一采纳,获得10
6秒前
兔子发布了新的文献求助10
6秒前
6秒前
木子完成签到 ,获得积分10
8秒前
nanan完成签到,获得积分10
8秒前
8秒前
研友_VZG7GZ应助冰阔罗采纳,获得30
10秒前
10秒前
123发布了新的文献求助10
10秒前
10秒前
深情安青应助学术机器1采纳,获得10
11秒前
11秒前
12秒前
yunyueqixun完成签到 ,获得积分10
12秒前
12秒前
fxxx发布了新的文献求助10
13秒前
老实芯完成签到,获得积分10
13秒前
Hyeri发布了新的文献求助10
13秒前
13秒前
司空豁完成签到,获得积分0
14秒前
凹凸先森发布了新的文献求助10
14秒前
vv发布了新的文献求助10
15秒前
核桃发布了新的文献求助10
15秒前
乌漆嘛黑发布了新的文献求助10
16秒前
17秒前
felinus完成签到,获得积分10
17秒前
TANG发布了新的文献求助10
17秒前
17秒前
liuwei发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4758671
求助须知:如何正确求助?哪些是违规求助? 4100535
关于积分的说明 12687803
捐赠科研通 3815382
什么是DOI,文献DOI怎么找? 2106317
邀请新用户注册赠送积分活动 1130968
关于科研通互助平台的介绍 1009320