数学
零(语言学)
非线性薛定谔方程
孤子
非线性系统
数学物理
数学分析
通气管
边界(拓扑)
薛定谔方程
量子力学
物理
语言学
哲学
作者
Bao‐Feng Feng,Xu‐Dan Luo,Mark J. Ablowitz,Ziad H. Musslimani
出处
期刊:Nonlinearity
[IOP Publishing]
日期:2018-10-30
卷期号:31 (12): 5385-5409
被引量:162
标识
DOI:10.1088/1361-6544/aae031
摘要
General soliton solutions to a nonlocal nonlinear Schr\"odinger (NLS) equation with PT-symmetry for both zero and nonzero boundary conditions {are considered} via the combination of Hirota's bilinear method and the Kadomtsev-Petviashvili (KP) hierarchy reduction method. First, general $N$-soliton solutions with zero boundary conditions are constructed. Starting from the tau functions of the two-component KP hierarchy, it is shown that they can be expressed in terms of either Gramian or double Wronskian determinants. On the contrary, from the tau functions of single component KP hierarchy, general soliton solutions to the nonlocal NLS equation with nonzero boundary conditions are obtained. All possible soliton solutions to nonlocal NLS with Parity (PT)-symmetry for both zero and nonzero boundary conditions are found in the present paper.
科研通智能强力驱动
Strongly Powered by AbleSci AI