Signal detection in turbid water using temporally encoded polarimetric integral imaging

积分成像 旋光法 光学 信号(编程语言) 物理 信噪比(成像) 水下 计算机科学 人工智能 散射 地质学 图像(数学) 海洋学 程序设计语言
作者
Rakesh Joshi,Gokul Krishnan,Timothy O’Connor,Bahram Javidi
出处
期刊:Optics Express [The Optical Society]
卷期号:28 (24): 36033-36033 被引量:29
标识
DOI:10.1364/oe.409234
摘要

To improve signal detection in a turbid medium, we propose temporally encoded single shot polarimetric integral imaging. An optical signal is temporally encoded using gold coded sequences and transmitted through a turbid medium. The encoded signals are captured as a sequence of elemental images by two orthogonal polarized image sensor arrays. Polarimetric and polarization difference imaging are used to suppress the partially polarized and unpolarized background noise such that only the polarized ballistic signal photons are captured at the sensor. Multidimensional integral imaging is used to obtain 4D reconstructed data, and multidimensional nonlinear correlation is performed on the reconstructed data to detect the optical signal. We compare the effectiveness of the proposed polarimetric underwater optical signal detection approach to conventional (non-polarimetric) integral imaging-based and 2D imaging-based signal detection systems. The underwater signal detection capabilities are measured through performance metrics such as receiver operating characteristic (ROC) curves, the area under the curve (AUC), and the number of detection errors. Furthermore, statistical measures, including the Kullback-Leibler divergence, signal-to-noise ratio (SNR), and peak-to-correlation energy (PCE), are also calculated to show the improved performance of the proposed system. Our experimental results show that the proposed polarimetric integral-imaging approach significantly outperforms the conventional imaging-based methods. To the best of our knowledge, this is the first report on temporally encoded single shot polarimetric integral imaging for signal detection in turbid water.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
隼叶完成签到 ,获得积分10
刚刚
优雅的笑晴完成签到,获得积分10
刚刚
柳梦悦发布了新的文献求助10
2秒前
思源应助小灰灰采纳,获得10
2秒前
坦率白竹发布了新的文献求助10
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
Criminology34应助科研通管家采纳,获得50
5秒前
孙友浩发布了新的文献求助10
5秒前
Criminology34应助科研通管家采纳,获得10
5秒前
Criminology34应助科研通管家采纳,获得50
5秒前
思源应助科研通管家采纳,获得10
5秒前
Criminology34应助科研通管家采纳,获得10
5秒前
5秒前
思源应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
spc68应助科研通管家采纳,获得10
6秒前
6秒前
唐糖应助科研通管家采纳,获得10
6秒前
spc68应助科研通管家采纳,获得10
6秒前
物理应助科研通管家采纳,获得10
6秒前
唐糖应助科研通管家采纳,获得10
6秒前
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
物理应助科研通管家采纳,获得10
6秒前
6秒前
Criminology34应助科研通管家采纳,获得10
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5761461
求助须知:如何正确求助?哪些是违规求助? 5529957
关于积分的说明 15399736
捐赠科研通 4897879
什么是DOI,文献DOI怎么找? 2634552
邀请新用户注册赠送积分活动 1582678
关于科研通互助平台的介绍 1537927