已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Salt dome related soil salinity in southern Iran: Prediction and mapping with averaging machine learning models

支持向量机 均方误差 盐度 表土 土壤盐分 人工智能 基本事实 随机森林 土壤科学 机器学习 环境科学 地质学 数学 计算机科学 土壤水分 统计 海洋学
作者
Fatemeh Abedi,Alireza Amirian‐Chakan,Mohammad Faraji,Ruhollah Taghizadeh–Mehrjardi,Ruth Kerry,Damoun Razmjoue,Thomas Scholten
出处
期刊:Land Degradation & Development [Wiley]
卷期号:32 (3): 1540-1554 被引量:33
标识
DOI:10.1002/ldr.3811
摘要

Abstract In order to manage soil salinity effectively, it is necessary to understand the origin and the spatial distribution of salinity. There are about 120 salt dome outcrops in southern Iran and little is known about their contribution as the potential sources of salts and the spatial pattern of salts around them. Six machine learning algorithms were applied to model topsoil electrical conductivity (EC) and sodium adsorption ratio (SAR) in the Darab Plain (surrounded by six salt domes), Fars Province. Decision trees (DT), k‐nearest neighbours (kNN), support vector machines (SVM), Cubist, random forests (RF) and extreme gradient boosting (XGBoost) were used as primary models and the Granger–Ramanathan (GR) method was used to combine the predictions of these models. The results showed that remotely sensed data contributed more to predict EC and SAR than terrain‐based data. In terms of root mean square errors (RMSE), Cubist followed by the RF model, tended to give the best estimates of EC, whereas for SAR, RF performed best and was followed closely by SVM and Cubist. Compared to the primary models, the GR method on average resulted in a decrease of 6.1% and 3.9% in RMSE and an increase of 10% and 10.9% in R 2 for EC and SAR, respectively. The spatial pattern of SAR and EC suggested that the contribution of salt domes in soil salinization varied significantly according to their hydraulic behaviour in relation to adjacent aquifers and their activity. In general, the model averaging approach showed the potential to improve the estimates of EC and SAR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vuluv完成签到,获得积分10
1秒前
万卷万里完成签到,获得积分10
1秒前
db学习版发布了新的文献求助10
1秒前
Leviathan完成签到 ,获得积分10
2秒前
3秒前
ET完成签到,获得积分10
3秒前
呆呆不瓜完成签到,获得积分10
6秒前
7秒前
Skywalk满天星完成签到,获得积分10
7秒前
墨辰完成签到 ,获得积分10
9秒前
dahai发布了新的文献求助10
10秒前
Sunday完成签到 ,获得积分10
10秒前
岳小龙完成签到 ,获得积分10
10秒前
七七完成签到 ,获得积分10
11秒前
宿素完成签到,获得积分10
11秒前
幽默的稚晴关注了科研通微信公众号
12秒前
CodeCraft应助芜湖采纳,获得10
13秒前
南风旧巷完成签到,获得积分10
13秒前
13秒前
13秒前
白金之星完成签到 ,获得积分10
14秒前
Ying完成签到,获得积分10
17秒前
科研通AI5应助asdf采纳,获得10
17秒前
18秒前
健忘远山发布了新的文献求助10
19秒前
执着乐双发布了新的文献求助10
20秒前
20秒前
rpe完成签到,获得积分10
20秒前
英姑应助TOJNRU采纳,获得10
21秒前
小周完成签到 ,获得积分10
21秒前
渣渣宣发布了新的文献求助10
23秒前
chenchenchen发布了新的文献求助10
24秒前
南风旧巷发布了新的文献求助10
25秒前
云魂完成签到,获得积分10
27秒前
nihaku完成签到,获得积分10
29秒前
执着乐双完成签到,获得积分10
32秒前
JamesPei应助健忘远山采纳,获得10
34秒前
木又完成签到 ,获得积分10
35秒前
焱焱不忘完成签到 ,获得积分10
36秒前
37秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of deresuscitation management vs. usual care on ventilator-free days in patients with abdominal septic shock 200
Erectile dysfunction From bench to bedside 200
Advanced Introduction to Behavioral Law and Economics 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824866
求助须知:如何正确求助?哪些是违规求助? 3367233
关于积分的说明 10444690
捐赠科研通 3086477
什么是DOI,文献DOI怎么找? 1698028
邀请新用户注册赠送积分活动 816632
科研通“疑难数据库(出版商)”最低求助积分说明 769848