A tutorial and tool for exploring feature similarity gradients with MRI data

计算机科学 人工智能 连接组学 特征(语言学) 体素 神经信息学 纤维束成像 相似性(几何) 连接体 模式识别(心理学) 数据科学 磁共振弥散成像 数据挖掘 功能连接 神经科学 心理学 语言学 哲学 图像(数学) 医学 磁共振成像 放射科
作者
Claude J. Bajada,Lucas Q Costa Campos,Svenja Caspers,Richard Muscat,Geoffrey Parker,Matthew A. Lambon Ralph,Lauren Cloutman,Nelson J. Trujillo‐Barreto
出处
期刊:NeuroImage [Elsevier BV]
卷期号:221: 117140-117140 被引量:28
标识
DOI:10.1016/j.neuroimage.2020.117140
摘要

There has been an increasing interest in examining organisational principles of the cerebral cortex (and subcortical regions) using different MRI features such as structural or functional connectivity. Despite the widespread interest, introductory tutorials on the underlying technique targeted for the novice neuroimager are sparse in the literature. Articles that investigate various “neural gradients” (for example based on region studied “cortical gradients,” “cerebellar gradients,” “hippocampal gradients” etc … or feature of interest “functional gradients,” “cytoarchitectural gradients,” “myeloarchitectural gradients” etc …) have increased in popularity. Thus, we believe that it is opportune to discuss what is generally meant by “gradient analysis”. We introduce basics concepts in graph theory, such as graphs themselves, the degree matrix, and the adjacency matrix. We discuss how one can think about gradients of feature similarity (the similarity between timeseries in fMRI, or streamline in tractography) using graph theory and we extend this to explore such gradients across the whole MRI scale; from the voxel level to the whole brain level. We proceed to introduce a measure for quantifying the level of similarity in regions of interest. We propose the term “the Vogt-Bailey index” for such quantification to pay homage to our history as a brain mapping community. We run through the techniques on sample datasets including a brain MRI as an example of the application of the techniques on real data and we provide several appendices that expand upon details. To maximise intuition, the appendices contain a didactic example describing how one could use these techniques to solve a particularly pernicious problem that one may encounter at a wedding. Accompanying the article is a tool, available in both MATLAB and Python, that enables readers to perform the analysis described in this article on their own data. We refer readers to the graphical abstract as an overview of the analysis pipeline presented in this work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
克拉斯发布了新的文献求助10
1秒前
4秒前
6秒前
不知道发布了新的文献求助10
7秒前
8秒前
科研通AI2S应助研友_nqv5WZ采纳,获得10
10秒前
11秒前
xmqaq完成签到,获得积分10
11秒前
妮儿发布了新的文献求助10
14秒前
北风应助小天采纳,获得10
16秒前
充电宝应助望海潮采纳,获得10
19秒前
li发布了新的文献求助10
25秒前
FXT完成签到 ,获得积分10
27秒前
27秒前
沉醉的中国钵完成签到 ,获得积分10
29秒前
29秒前
orixero应助不如看海采纳,获得10
32秒前
33秒前
Colossus发布了新的文献求助10
34秒前
38秒前
39秒前
文昊完成签到,获得积分10
40秒前
乐观的雁兰完成签到,获得积分10
40秒前
40秒前
克拉斯完成签到,获得积分10
41秒前
42秒前
科研通AI5应助斯文的夜雪采纳,获得100
44秒前
dyh发布了新的文献求助10
45秒前
45秒前
不如看海发布了新的文献求助10
45秒前
望海潮发布了新的文献求助10
47秒前
47秒前
Jun完成签到 ,获得积分10
47秒前
52秒前
57秒前
英俊的铭应助LIJINGGE采纳,获得10
58秒前
爆米花应助LIJINGGE采纳,获得10
58秒前
一路狂奔等不了完成签到 ,获得积分10
59秒前
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778778
求助须知:如何正确求助?哪些是违规求助? 3324343
关于积分的说明 10218037
捐赠科研通 3039436
什么是DOI,文献DOI怎么找? 1668089
邀请新用户注册赠送积分活动 798545
科研通“疑难数据库(出版商)”最低求助积分说明 758437