Prediction of Flow Properties on Turbine Vane Airfoil Surface From 3D Geometry With Convolutional Neural Network

翼型 替代模型 计算流体力学 计算机科学 卷积神经网络 背景(考古学) 涡轮机 人工智能 机器学习 机械工程 航空航天工程 工程类 古生物学 生物
作者
Yuan Jin,Shan Li,Olivier Jung
标识
DOI:10.1115/gt2019-90811
摘要

Abstract Nowadays, Computational Fluid Dynamics (CFD) simulations play an increasingly important role for turbine airfoil design. This high-fidelity approach is capable to provide accurate information of flow fields. Meanwhile, the calculation accuracy is always gained at the expense of numerical cost. This gap limits opportunities for design space exploration. To address this problem, surrogate models (also known as metamodels) are introduced to approximate high-fidelity CFD models. However, traditional surrogate models, such as Kriging or Radial Basis Function, construct response surface on a design space with limited dimensions. This prevents users from predicting the flow fields directly from the geometry and performing interactive design of airfoil. In the present work, we propose a Convolutional Neural Network (CNN) based surrogate model to predict flow properties on turbine vane airfoil surface from 3D airfoil profile defined by point cloud. The proposed CNN architecture adopts a symmetric expanding path that is similar to the so-called U-Net. The geometries in the training and testing dataset are generated via varying the parameters defined by the Free-Form Deformation approach. The corresponding flow fields are obtained through high-fidelity CFD simulations performed in a finite volume context. Furthermore, a gaussian process based Bayesian optimization technique is utilized to tune automatically the hyperparameters of the network. In this work, we trained the CNN based surrogate model with static pressure and temperature on the mean section of turbine vane airfoil surface. The trained model is able to predict in a reliable and efficient way the corresponding property directly from the 3D geometry, which allows engineers to agilely adjust their airfoil design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林夏发布了新的文献求助10
1秒前
1秒前
2秒前
刘香发布了新的文献求助10
3秒前
SisiZheng发布了新的文献求助10
3秒前
daxing完成签到,获得积分10
3秒前
bkagyin应助健忘的Sherry苑博采纳,获得10
3秒前
盈盈发布了新的文献求助10
4秒前
6秒前
7秒前
7秒前
8秒前
大模型应助SisiZheng采纳,获得20
8秒前
小灰灰完成签到,获得积分10
8秒前
8秒前
puppynorio完成签到,获得积分10
8秒前
科研通AI5应助安南采纳,获得10
9秒前
10秒前
10秒前
路非明发布了新的文献求助10
10秒前
Winne发布了新的文献求助10
10秒前
个性思真完成签到,获得积分10
11秒前
大模型应助WYB采纳,获得10
11秒前
12秒前
SherlockJia完成签到,获得积分10
12秒前
水水水完成签到 ,获得积分10
12秒前
蓟菏为衣发布了新的文献求助10
13秒前
常丽芳发布了新的文献求助10
13秒前
薄年西完成签到,获得积分10
13秒前
13秒前
仲滋滋完成签到,获得积分10
14秒前
卡布叻完成签到 ,获得积分10
14秒前
15秒前
加百莉发布了新的文献求助10
15秒前
守望者发布了新的文献求助10
15秒前
阳光的未来完成签到,获得积分10
16秒前
我妈知秀发布了新的文献求助10
16秒前
王强发布了新的文献求助10
16秒前
16秒前
Jomain完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5183197
求助须知:如何正确求助?哪些是违规求助? 4369586
关于积分的说明 13606801
捐赠科研通 4221418
什么是DOI,文献DOI怎么找? 2315112
邀请新用户注册赠送积分活动 1313884
关于科研通互助平台的介绍 1262660