已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A survey of deep learning models in medical therapeutic areas.

机器学习 人工神经网络 领域(数学)
作者
Alberto Nogales,Álvaro J. García-Tejedor,Diana Monge,Juan Serrano Vara,Cristina Anton
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:112: 102020-102020 被引量:7
标识
DOI:10.1016/j.artmed.2021.102020
摘要

Artificial intelligence is a broad field that comprises a wide range of techniques, where deep learning is presently the one with the most impact. Moreover, the medical field is an area where data both complex and massive and the importance of the decisions made by doctors make it one of the fields in which deep learning techniques can have the greatest impact. A systematic review following the Cochrane recommendations with a multidisciplinary team comprised of physicians, research methodologists and computer scientists has been conducted. This survey aims to identify the main therapeutic areas and the deep learning models used for diagnosis and treatment tasks. The most relevant databases included were MedLine, Embase, Cochrane Central, Astrophysics Data System, Europe PubMed Central, Web of Science and Science Direct. An inclusion and exclusion criteria were defined and applied in the first and second peer review screening. A set of quality criteria was developed to select the papers obtained after the second screening. Finally, 126 studies from the initial 3493 papers were selected and 64 were described. Results show that the number of publications on deep learning in medicine is increasing every year. Also, convolutional neural networks are the most widely used models and the most developed area is oncology where they are used mainly for image analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助kpktvn采纳,获得10
刚刚
1秒前
1秒前
1秒前
yannnis完成签到,获得积分10
4秒前
实验室奇妙夜应助Dr大壮采纳,获得10
5秒前
失眠问晴完成签到,获得积分10
5秒前
淡然冬灵发布了新的文献求助10
6秒前
yannnis发布了新的文献求助10
7秒前
milly发布了新的文献求助10
13秒前
14秒前
polite完成签到 ,获得积分10
15秒前
16秒前
浮游应助不上电线杆采纳,获得10
17秒前
zm发布了新的文献求助10
18秒前
李健的粉丝团团长应助wzl采纳,获得10
18秒前
Daisykiller发布了新的文献求助10
19秒前
在水一方应助乌黑的眼圈采纳,获得30
19秒前
香翔想相发布了新的文献求助10
20秒前
脑洞疼应助虚心求学采纳,获得10
22秒前
24秒前
科研通AI5应助jibo采纳,获得30
27秒前
dff发布了新的文献求助10
27秒前
李娟发布了新的文献求助10
29秒前
cd发布了新的文献求助10
33秒前
35秒前
panpan应助jwt采纳,获得10
36秒前
情怀应助优雅的藏鸟采纳,获得10
36秒前
上官若男应助科研通管家采纳,获得10
37秒前
37秒前
bkagyin应助科研通管家采纳,获得10
37秒前
小蘑菇应助科研通管家采纳,获得10
37秒前
所所应助科研通管家采纳,获得10
37秒前
dff完成签到,获得积分20
37秒前
orixero应助科研通管家采纳,获得10
37秒前
wanci应助科研通管家采纳,获得10
37秒前
ding应助科研通管家采纳,获得10
37秒前
jibo发布了新的文献求助30
41秒前
结实的凝天完成签到 ,获得积分10
42秒前
zm完成签到,获得积分10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Beauty and Innovation in La Machine Chinoise: Falla, Debussy, Ravel, Roussel 1000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
An overview of orchard cover crop management 800
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
National standards & grade-level outcomes for K-12 physical education 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4805224
求助须知:如何正确求助?哪些是违规求助? 4121284
关于积分的说明 12751526
捐赠科研通 3854727
什么是DOI,文献DOI怎么找? 2122748
邀请新用户注册赠送积分活动 1144943
关于科研通互助平台的介绍 1036240