亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A survey of deep learning models in medical therapeutic areas.

机器学习 人工神经网络 领域(数学)
作者
Alberto Nogales,Álvaro J. García-Tejedor,Diana Monge,Juan Serrano Vara,Cristina Anton
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:112: 102020-102020 被引量:7
标识
DOI:10.1016/j.artmed.2021.102020
摘要

Artificial intelligence is a broad field that comprises a wide range of techniques, where deep learning is presently the one with the most impact. Moreover, the medical field is an area where data both complex and massive and the importance of the decisions made by doctors make it one of the fields in which deep learning techniques can have the greatest impact. A systematic review following the Cochrane recommendations with a multidisciplinary team comprised of physicians, research methodologists and computer scientists has been conducted. This survey aims to identify the main therapeutic areas and the deep learning models used for diagnosis and treatment tasks. The most relevant databases included were MedLine, Embase, Cochrane Central, Astrophysics Data System, Europe PubMed Central, Web of Science and Science Direct. An inclusion and exclusion criteria were defined and applied in the first and second peer review screening. A set of quality criteria was developed to select the papers obtained after the second screening. Finally, 126 studies from the initial 3493 papers were selected and 64 were described. Results show that the number of publications on deep learning in medicine is increasing every year. Also, convolutional neural networks are the most widely used models and the most developed area is oncology where they are used mainly for image analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
不安的靖柔完成签到,获得积分10
14秒前
Bravetwq发布了新的文献求助10
15秒前
宋子虎完成签到 ,获得积分10
17秒前
nenoaowu应助不安的靖柔采纳,获得30
19秒前
李健的小迷弟应助Bravetwq采纳,获得10
25秒前
璨澄完成签到 ,获得积分10
27秒前
追寻微笑完成签到 ,获得积分10
27秒前
阳阳阳完成签到,获得积分10
32秒前
Bravetwq完成签到,获得积分10
39秒前
39秒前
44秒前
英俊的铭应助调皮帆布鞋采纳,获得10
45秒前
典雅问寒应助科研通管家采纳,获得10
51秒前
lcj2022发布了新的文献求助10
52秒前
56秒前
星宇完成签到 ,获得积分10
58秒前
1分钟前
已知中的未知完成签到 ,获得积分10
1分钟前
我是老大应助朴实的成风采纳,获得30
1分钟前
科研通AI2S应助干净幻竹采纳,获得10
1分钟前
甜蜜发带完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Cino完成签到,获得积分10
1分钟前
广发牛勿完成签到,获得积分10
1分钟前
JamesPei应助chelsea采纳,获得10
1分钟前
广发牛勿发布了新的文献求助10
1分钟前
儒雅的飞槐完成签到,获得积分20
1分钟前
1分钟前
Owen应助闪亮喜之郎采纳,获得20
1分钟前
硕小牛完成签到,获得积分10
1分钟前
1分钟前
1分钟前
搞怪的归尘完成签到,获得积分10
2分钟前
2分钟前
MedicoYang发布了新的文献求助100
2分钟前
2分钟前
chelsea发布了新的文献求助10
2分钟前
无语的安白应助粽子采纳,获得10
2分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Towards a spatial history of contemporary art in China 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843176
求助须知:如何正确求助?哪些是违规求助? 3385441
关于积分的说明 10540498
捐赠科研通 3106019
什么是DOI,文献DOI怎么找? 1710846
邀请新用户注册赠送积分活动 823771
科研通“疑难数据库(出版商)”最低求助积分说明 774264