Current progress in the development of Fe-air batteries and their prospects for next-generation batteries

电解质 分离器(采油) 电池(电) 电极 纳米技术 储能 材料科学 化学 量子力学 热力学 物理 物理化学 功率(物理)
作者
Wai Kian Tan,Go Kawamura,Hiroyuki Muto,Atsunori Matsuda
出处
期刊:Elsevier eBooks [Elsevier]
卷期号:: 59-83 被引量:10
标识
DOI:10.1016/b978-0-12-820628-7.00003-4
摘要

With the ever-growing dependency on electronic devices as well as the rapid development of electric vehicles, the demand for large-scale energy storage systems has risen significantly. Besides lithium-ion batteries, one alternative source of energy that has attracted tremendous attention is metal-air batteries as they possess high theoretical energy densities compared to other forms of batteries. Metal-air batteries employ metals such as iron, zinc, tungsten, or aluminum as the negative working electrodes and oxygen from the air as the positive working electrode. As the theoretical capacity of the metal-air batteries is determined by the negative electrodes, development is more focused on the metal electrode. Commonly, a metal-air battery in a liquid state with an alkaline aqueous solution as the electrolyte has a number of drawbacks, such as irreversibility of hydroxide ions conduction, fast capacity decay, electrode deformation, as well as hydrogen evolution during the charging process. As technology is moving toward Internet-of-Things and lightweight wearable devices, the bulkiness as well as weight of the batteries have never been more crucial. Therefore the heavier and leakage-prone liquid electrolyte-based metal-air batteries are deemed inappropriate for use as wearable devices. Therefore an alternative method to overcome both electrolyte leakage and hydrogen evolution is to utilize a solid electrolyte in an all-solid-state metal-air rechargeable battery. In this chapter, brief fundamentals of metal-air batteries focusing more on the Fe-air battery, current progress, and its future outlook will be discussed. The development of all-solid-state Fe-air batteries and their potential will also be mentioned.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助慕迎蕾采纳,获得10
刚刚
潘潘发布了新的文献求助10
1秒前
ccc完成签到,获得积分10
1秒前
2秒前
锐利之金完成签到,获得积分10
2秒前
杨兴健完成签到,获得积分10
3秒前
不配.应助努力的学采纳,获得20
5秒前
6秒前
6秒前
7秒前
呼延水云发布了新的文献求助10
8秒前
8秒前
酷小裤完成签到,获得积分10
9秒前
果粒橙应助yanning采纳,获得10
9秒前
斯文败类应助纯真沛儿采纳,获得10
9秒前
9秒前
猪猪hero发布了新的文献求助10
10秒前
11秒前
潘潘发布了新的文献求助10
12秒前
12秒前
嘎嘎应助LIBINWANG采纳,获得10
12秒前
爱吃大米发布了新的文献求助10
13秒前
13秒前
橘子完成签到,获得积分10
14秒前
科研圣体完成签到,获得积分10
14秒前
今后应助hhh采纳,获得10
14秒前
16秒前
16秒前
984295567完成签到,获得积分10
16秒前
junchenike完成签到,获得积分10
17秒前
慕迎蕾发布了新的文献求助10
18秒前
逍遥发布了新的文献求助10
19秒前
ppp完成签到,获得积分10
19秒前
19秒前
cc应助vitamin采纳,获得50
19秒前
RONG发布了新的文献求助30
20秒前
Akim应助爱吃大米采纳,获得10
20秒前
yanning完成签到,获得积分20
22秒前
23秒前
SKSK完成签到,获得积分10
23秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4231837
求助须知:如何正确求助?哪些是违规求助? 3765105
关于积分的说明 11830613
捐赠科研通 3424081
什么是DOI,文献DOI怎么找? 1879039
邀请新用户注册赠送积分活动 931933
科研通“疑难数据库(出版商)”最低求助积分说明 839431