Novelty-based Intrusion Detection of Sensor Attacks on Unmanned Aerial Vehicles

计算机科学 入侵检测系统 人工智能 异常检测 自编码 无线传感器网络 新知识检测 特征选择 机器学习 降维 人工神经网络 实时计算 数据挖掘 新颖性 计算机网络 哲学 神学
作者
Jason Whelan,Thanigajan Sangarapillai,Omar Minawi,Abdulaziz Almehmadi,Khalil El‐Khatib
标识
DOI:10.1145/3416013.3426446
摘要

Unmanned Aerial Vehicles (UAVs) have proven to be a useful technology in numerous industries including industrial control systems surveillance, law enforcement, and military operations. Due to their heavy reliance on wireless protocols and hostile operating environments, UAVs face a large threat landscape. As attacks against UAVs increase, an intelligent intrusion detection system (IDS) is needed to aid the UAV in identifying attacks. The UAV domain presents unique challenges for intelligent IDS development, such as the variety of sensors, communication protocols, UAV platforms, control configurations, and dataset availability. In this paper, we propose a novelty-based approach to intrusion detection in UAVs by using one-class classifiers. One-class classifiers require only non-anomalous data to exist in the training set. This allows for the use of flight logs as training data, which are created by most UAVs during flight by default. Principal Component Analysis is applied to sensor logs for dimensionality reduction, and one-class classifier models are generated per sensor. A number of one-class classifiers are selected: One-Class Support Vector Machine, Autoencoder Neural Network, and Local Outlier Factor. The pre-processing, feature selection, training, and tuning of the selected algorithms is discussed. GPS spoofing is used throughout the paper as a common example of an external sensor-based attack. This approach shows to be effective across multiple UAV platforms with platform-specific F1 scores up to 99.56% and 99.73% for benign and malicious sensor readings respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
里应为发布了新的文献求助10
1秒前
2秒前
2秒前
zlLt发布了新的文献求助10
2秒前
好运来发布了新的文献求助10
3秒前
SSD完成签到,获得积分20
3秒前
CodeCraft应助wimper采纳,获得10
4秒前
Jasper应助骨科采纳,获得10
4秒前
4秒前
汉堡包应助69采纳,获得10
4秒前
司仪丶发布了新的文献求助10
5秒前
5秒前
满意乐枫发布了新的文献求助10
6秒前
6秒前
LiZnO完成签到,获得积分10
7秒前
浮游应助连安阳采纳,获得10
7秒前
lxh完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
生椰拿铁发布了新的文献求助10
9秒前
10秒前
科研通AI5应助谢家扬采纳,获得30
10秒前
lin发布了新的文献求助10
10秒前
11秒前
潇潇雨歇发布了新的文献求助10
11秒前
12秒前
烨伟给烨伟的求助进行了留言
12秒前
风清扬发布了新的文献求助30
12秒前
123发布了新的文献求助10
13秒前
小马甲应助单纯醉易采纳,获得10
13秒前
13秒前
wmc1357完成签到,获得积分10
13秒前
jason93发布了新的文献求助10
14秒前
科研通AI6应助lytyl采纳,获得10
14秒前
15秒前
Fyf333发布了新的文献求助10
15秒前
15秒前
16秒前
wimper发布了新的文献求助10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Optimization and Learning via Stochastic Gradient Search 300
Higher taxa of Basidiomycetes 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4679792
求助须知:如何正确求助?哪些是违规求助? 4056132
关于积分的说明 12542028
捐赠科研通 3750643
什么是DOI,文献DOI怎么找? 2071501
邀请新用户注册赠送积分活动 1100578
科研通“疑难数据库(出版商)”最低求助积分说明 980055