Novel patient-derived preclinical models of liver cancer

可药性 癌症 医学 恶性肿瘤 临床试验 肝癌 生物信息学 人口 鉴定(生物学) 肿瘤微环境 计算生物学 癌症研究 生物 病理 内科学 基因 环境卫生 植物 生物化学
作者
Erin Bresnahan,Pierluigi Ramadori,Mathias Heikenwälder,Lars Zender,Amaia Lujambio
出处
期刊:Journal of Hepatology [Elsevier BV]
卷期号:72 (2): 239-249 被引量:54
标识
DOI:10.1016/j.jhep.2019.09.028
摘要

Preclinical models of cancer based on the use of human cancer cell lines and mouse models have enabled discoveries that have been successfully translated into patients. And yet the majority of clinical trials fail, emphasising the urgent need to improve preclinical research to better interrogate the potential efficacy of each therapy and the patient population most likely to benefit. This is particularly important for liver malignancies, which lack highly efficient treatments and account for hundreds of thousands of deaths around the globe. Given the intricate network of genetic and environmental factors that contribute to liver cancer development and progression, the identification of new druggable targets will mainly depend on establishing preclinical models that mirror the complexity of features observed in patients. The development of new 3D cell culture systems, originating from cells/tissues isolated from patients, might create new opportunities for the generation of more specific and personalised therapies. However, these systems are unable to recapitulate the tumour microenvironment and interactions with the immune system, both proven to be critical influences on therapeutic outcomes. Patient-derived xenografts, in particular with humanised mouse models, more faithfully mimic the physiology of human liver cancer but are costly and time-consuming, which can be prohibitive for personalising therapies in the setting of an aggressive malignancy. In this review, we discuss the latest advances in the development of more accurate preclinical models to better understand liver cancer biology and identify paradigm-changing therapies, stressing the importance of a bi-directional communicative flow between clinicians and researchers to establish reliable model systems and determine how best to apply them to expanding our current knowledge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
制药小兵完成签到,获得积分10
1秒前
Aeon完成签到,获得积分10
1秒前
1秒前
1秒前
zrt发布了新的文献求助10
2秒前
bkagyin应助徐果采纳,获得10
3秒前
唐九完成签到,获得积分20
3秒前
3秒前
3秒前
lister完成签到,获得积分10
3秒前
科研通AI6应助xiaoxiao采纳,获得10
3秒前
如梦中完成签到,获得积分10
4秒前
我是老大应助鲜艳的遥采纳,获得10
4秒前
小医神僧完成签到,获得积分10
5秒前
zhuyouwang完成签到,获得积分10
5秒前
yxy发布了新的文献求助10
5秒前
勤恳的柚子完成签到,获得积分10
6秒前
6秒前
脑洞疼应助Patty采纳,获得10
7秒前
芥楠完成签到,获得积分10
7秒前
李爱国应助qianmu采纳,获得10
7秒前
Ava应助Heisenberg采纳,获得10
8秒前
戊烷完成签到,获得积分10
8秒前
科目三应助唐九采纳,获得10
8秒前
8秒前
9秒前
希望天下0贩的0应助四夕采纳,获得10
9秒前
Ava应助59采纳,获得10
9秒前
9秒前
9秒前
大模型应助善良的梦槐采纳,获得10
10秒前
英俊的铭应助毕加石页采纳,获得10
11秒前
11秒前
刘栋完成签到,获得积分10
12秒前
刘若鑫完成签到,获得积分10
12秒前
12秒前
能干数据线完成签到,获得积分20
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5260929
求助须知:如何正确求助?哪些是违规求助? 4422163
关于积分的说明 13765353
捐赠科研通 4296568
什么是DOI,文献DOI怎么找? 2357408
邀请新用户注册赠送积分活动 1353709
关于科研通互助平台的介绍 1314957