A Hybrid Deep Learning Model for Predicting Molecular Subtypes of Human Breast Cancer Using Multimodal Data

乳腺癌 计算机科学 人工智能 模态(人机交互) 深度学习 特征提取 机器学习 主成分分析 特征(语言学) 数据集 模式识别(心理学) 数据挖掘 癌症 医学 内科学 语言学 哲学
作者
Tao Liu,Junhao Huang,Tianchi Liao,Ruitao Pu,Shuanglin Liu,Yue Peng
出处
期刊:Irbm [Elsevier BV]
卷期号:43 (1): 62-74 被引量:63
标识
DOI:10.1016/j.irbm.2020.12.002
摘要

The prediction of breast cancer subtypes plays a key role in the diagnosis and prognosis of breast cancer. In recent years, deep learning (DL) has shown good performance in the intelligent prediction of breast cancer subtypes. However, most of the traditional DL models use single modality data, which can just extract a few features, so it cannot establish a stable relationship between patient characteristics and breast cancer subtypes. We used the TCGA-BRCA dataset as a sample set for molecular subtype prediction of breast cancer. It is a public dataset that can be obtained through the following link: https://portal.gdc.cancer.gov/projects/TCGA-BRCA In this paper, a Hybrid DL model based on the multimodal data is proposed. We combine the patient's gene modality data with image modality data to construct a multimodal fusion framework. According to the different forms and states, we set up feature extraction networks respectively, and then we fuse the output of the two feature networks based on the idea of weighted linear aggregation. Finally, the fused features are used to predict breast cancer subtypes. In particular, we use the principal component analysis to reduce the dimensionality of high-dimensional data of gene modality and filter the data of image modality. Besides, we also improve the traditional feature extraction network to make it show better performance. The results show that compared with the traditional DL model, the Hybrid DL model proposed in this paper is more accurate and efficient in predicting breast cancer subtypes. Our model achieved a prediction accuracy of 88.07% in 10 times of 10-fold cross-validation. We did a separate AUC test for each subtype, and the average AUC value obtained was 0.9427. In terms of subtype prediction accuracy, our model is about 7.45% higher than the previous average.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
失眠小笼包完成签到,获得积分20
刚刚
Wzx完成签到 ,获得积分10
2秒前
宇心完成签到,获得积分10
3秒前
nannan发布了新的文献求助10
4秒前
4秒前
4秒前
天天快乐应助失眠小笼包采纳,获得10
4秒前
MAIDANG完成签到,获得积分10
5秒前
6秒前
6秒前
wy完成签到,获得积分20
7秒前
faith2002完成签到 ,获得积分10
7秒前
奋斗小真完成签到,获得积分10
8秒前
8秒前
小小二完成签到,获得积分10
9秒前
10秒前
小晓完成签到,获得积分10
10秒前
大头头不大完成签到 ,获得积分10
10秒前
hahahaha发布了新的文献求助10
11秒前
HX3275完成签到,获得积分10
11秒前
lw发布了新的文献求助10
12秒前
炙热的夜雪完成签到 ,获得积分10
13秒前
wendy_1006完成签到,获得积分10
14秒前
huangbaba11完成签到 ,获得积分10
14秒前
15秒前
心碎小文发布了新的文献求助10
17秒前
wyg117完成签到,获得积分10
17秒前
852应助通行证采纳,获得10
17秒前
18秒前
song完成签到,获得积分10
19秒前
20秒前
20秒前
小晓发布了新的文献求助10
20秒前
sgz666完成签到 ,获得积分10
21秒前
Kobe发布了新的文献求助10
22秒前
24秒前
xyhua925发布了新的文献求助10
25秒前
keyan完成签到 ,获得积分10
27秒前
好吃的蛋挞完成签到,获得积分10
27秒前
123发布了新的文献求助10
27秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Treatise on Process Metallurgy Volume 3: Industrial Processes (2nd edition) 250
The Framed World: Tourism, Tourists and Photography (New Directions in Tourism Analysis) 1st Edition 200
Graphene Quantum Dots (GQDs): Advances in Research and Applications 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825325
求助须知:如何正确求助?哪些是违规求助? 3367626
关于积分的说明 10446791
捐赠科研通 3086963
什么是DOI,文献DOI怎么找? 1698354
邀请新用户注册赠送积分活动 816769
科研通“疑难数据库(出版商)”最低求助积分说明 769951