Generation of classification criteria for chronic fatigue syndrome using an artificial neural network and traditional criteria set.

人工神经网络 医学 纤维肌痛 人工智能 慢性疲劳综合征 决策树 机器学习 物理疗法 计算机科学
作者
Roland Linder,R Dinser,Matthias Wagner,G. Krueger,A. Hoffmann
出处
期刊:PubMed 卷期号:16 (1): 37-43 被引量:20
链接
标识
摘要

The definition of chronic fatigue syndrome (CFS) is still disputed and no validated classification criteria have been published. Artificial neural networks (ANN) are computer-based models that can help to evaluate complex correlations. We examined the utility of ANN and other conventional methods in generating classification criteria for CFS compared to other diseases with prominent fatigue, systemic lupus erythematosus (SLE) and fibromyalgia syndrome (FMA).Ninety-nine case patients with CFS, 41 patients with SLE and 58 with FMA were recruited from a generalist outpatient population. Clinical symptoms were documented with help of a predefined questionnaire. The patients were randomly divided into two groups. One group (n = 158) served to derive classification criteria sets by two-fold cross-validation, using a) unweighted application of criteria, b) regression coefficients, c) regression tree analysis, and d) artificial neural networks in parallel. These criteria were validated with the second group (n = 40).Classification criteria developed by ANN were found to have a sensitivity of 95% and a specificity of 85%. ANN achieved a higher accuracy than any of the other methods.We present validated criteria for the classification of CFS versus SLE and FMA, comparing different classification approaches. The most accurate criteria were derived with the help of ANN. We therefore recommend the use of ANN for the classification of syndromes with complex interrelated symptoms like CFS.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李治稳发布了新的文献求助10
4秒前
4秒前
4秒前
zchchem应助科研通管家采纳,获得50
4秒前
linkman应助科研通管家采纳,获得20
4秒前
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
shiqiang mu应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
5秒前
5秒前
Jasper应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
xiaozhuzhu完成签到,获得积分10
6秒前
研友_VZG7GZ应助twilight采纳,获得10
7秒前
8秒前
JiahaoRao完成签到,获得积分20
8秒前
9秒前
善学以致用应助树袋采纳,获得10
10秒前
77完成签到,获得积分10
12秒前
Hello应助恒心捏采纳,获得10
12秒前
赘婿应助自信的孱采纳,获得10
12秒前
我是老大应助aaa采纳,获得10
13秒前
刘睿伯发布了新的文献求助10
13秒前
1234567xjy发布了新的文献求助10
15秒前
XNt举报森水垚求助涉嫌违规
16秒前
20秒前
酷波er应助Hanhan_Yu采纳,获得10
20秒前
20秒前
21秒前
22秒前
余峥瑶完成签到 ,获得积分10
24秒前
aaa发布了新的文献求助10
24秒前
刘睿伯完成签到,获得积分20
25秒前
HeyU发布了新的文献求助10
25秒前
momo发布了新的文献求助10
25秒前
小苗完成签到 ,获得积分10
26秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
A Student's Guide to Developmental Psychology 600
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4154624
求助须知:如何正确求助?哪些是违规求助? 3690606
关于积分的说明 11657682
捐赠科研通 3382510
什么是DOI,文献DOI怎么找? 1856183
邀请新用户注册赠送积分活动 917711
科研通“疑难数据库(出版商)”最低求助积分说明 831105