希尔伯特综合定理
数学
局部环
纯数学
多重性(数学)
残渣场
戒指(化学)
领域(数学)
数学分析
化学
有机化学
标识
DOI:10.1142/s021949881950097x
摘要
Let [Formula: see text] be a Cohen–Macaulay local ring. We prove that the [Formula: see text]th syzygy module of a maximal Cohen–Macaulay [Formula: see text]-module cannot have a semidualizing direct summand for every [Formula: see text]. In particular, it follows that [Formula: see text] is Gorenstein if and only if some syzygy of a canonical module of [Formula: see text] has a nonzero free direct summand. We also give a number of necessary and sufficient conditions for a Cohen–Macaulay local ring of minimal multiplicity to be regular or Gorenstein. These criteria are based on vanishing of certain Exts or Tors involving syzygy modules of the residue field.
科研通智能强力驱动
Strongly Powered by AbleSci AI