A boosted decision tree approach using Bayesian hyper-parameter optimization for credit scoring

计算机科学 梯度升压 Boosting(机器学习) 机器学习 决策树 人工智能 贝叶斯优化 随机森林 特征选择 超参数优化 数据挖掘 集合预报 特征(语言学) 贝叶斯概率 支持向量机 语言学 哲学
作者
Yufei Xia,Chuanzhe Liu,Yuying Li,Nana Liu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:78: 225-241 被引量:484
标识
DOI:10.1016/j.eswa.2017.02.017
摘要

Credit scoring is an effective tool for banks to properly guide decision profitably on granting loans. Ensemble methods, which according to their structures can be divided into parallel and sequential ensembles, have been recently developed in the credit scoring domain. These methods have proven their superiority in discriminating borrowers accurately. However, among the ensemble models, little consideration has been provided to the following: (1) highlighting the hyper-parameter tuning of base learner despite being critical to well-performed ensemble models; (2) building sequential models (i.e., boosting, as most have focused on developing the same or different algorithms in parallel); and (3) focusing on the comprehensibility of models. This paper aims to propose a sequential ensemble credit scoring model based on a variant of gradient boosting machine (i.e., extreme gradient boosting (XGBoost)). The model mainly comprises three steps. First, data pre-processing is employed to scale the data and handle missing values. Second, a model-based feature selection system based on the relative feature importance scores is utilized to remove redundant variables. Third, the hyper-parameters of XGBoost are adaptively tuned with Bayesian hyper-parameter optimization and used to train the model with selected feature subset. Several hyper-parameter optimization methods and baseline classifiers are considered as reference points in the experiment. Results demonstrate that Bayesian hyper-parameter optimization performs better than random search, grid search, and manual search. Moreover, the proposed model outperforms baseline models on average over four evaluation measures: accuracy, error rate, the area under the curve (AUC) H measure (AUC-H measure), and Brier score. The proposed model also provides feature importance scores and decision chart, which enhance the interpretability of credit scoring model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
元靖完成签到,获得积分10
刚刚
玥越发布了新的文献求助10
1秒前
每天都在找完成签到,获得积分10
2秒前
震动的西装完成签到 ,获得积分10
4秒前
eeupy发布了新的文献求助10
4秒前
4秒前
3211应助BUG采纳,获得10
4秒前
5秒前
5秒前
王三歲完成签到,获得积分10
5秒前
冬凛发布了新的文献求助10
6秒前
7秒前
9秒前
serendipity完成签到,获得积分10
9秒前
10秒前
顾矜应助霸气的凝竹采纳,获得10
10秒前
难过忆山发布了新的文献求助10
11秒前
12秒前
蛋挞发布了新的文献求助10
12秒前
sid发布了新的文献求助10
12秒前
哎嘤斯坦完成签到,获得积分10
13秒前
心灵美的修洁完成签到 ,获得积分10
14秒前
14秒前
小鼠喂了吗完成签到,获得积分10
15秒前
15秒前
点点完成签到 ,获得积分10
16秒前
16秒前
16秒前
mugglea完成签到 ,获得积分10
17秒前
酷波er应助sumugeng采纳,获得10
17秒前
蛋挞完成签到,获得积分10
18秒前
Txf发布了新的文献求助10
18秒前
难过忆山完成签到,获得积分10
19秒前
Stove完成签到,获得积分10
19秒前
眼睛大的小熊猫完成签到,获得积分10
19秒前
李爱国应助甜甜莫言采纳,获得10
20秒前
研友_kngjrL发布了新的文献求助30
20秒前
Ooo发布了新的文献求助10
21秒前
FashionBoy应助HUSHIYI采纳,获得10
22秒前
fzzf完成签到,获得积分10
22秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812481
求助须知:如何正确求助?哪些是违规求助? 3356992
关于积分的说明 10384882
捐赠科研通 3074184
什么是DOI,文献DOI怎么找? 1688647
邀请新用户注册赠送积分活动 812247
科研通“疑难数据库(出版商)”最低求助积分说明 766960