Sensing spatial distribution of urban land use by integrating points-of-interest and Google Word2Vec model

地理空间分析 文字2vec 地理 兴趣点 地图学 城市规划 计算机科学 空间分析 比例(比率) 地理信息系统 数据科学 土地利用 数据挖掘 遥感 人工智能 工程类 土木工程 嵌入
作者
Yao Yao,Xia Li,Xiaoping Liu,Penghua Liu,Zhaotang Liang,Jinbao Zhang,Ke Mai
出处
期刊:International journal of geographical information systems [Informa]
卷期号:31 (4): 825-848 被引量:452
标识
DOI:10.1080/13658816.2016.1244608
摘要

Urban land use information plays an essential role in a wide variety of urban planning and environmental monitoring processes. During the past few decades, with the rapid technological development of remote sensing (RS), geographic information systems (GIS) and geospatial big data, numerous methods have been developed to identify urban land use at a fine scale. Points-of-interest (POIs) have been widely used to extract information pertaining to urban land use types and functional zones. However, it is difficult to quantify the relationship between spatial distributions of POIs and regional land use types due to a lack of reliable models. Previous methods may ignore abundant spatial features that can be extracted from POIs. In this study, we establish an innovative framework that detects urban land use distributions at the scale of traffic analysis zones (TAZs) by integrating Baidu POIs and a Word2Vec model. This framework was implemented using a Google open-source model of a deep-learning language in 2013. First, data for the Pearl River Delta (PRD) are transformed into a TAZ-POI corpus using a greedy algorithm by considering the spatial distributions of TAZs and inner POIs. Then, high-dimensional characteristic vectors of POIs and TAZs are extracted using the Word2Vec model. Finally, to validate the reliability of the POI/TAZ vectors, we implement a K-Means-based clustering model to analyze correlations between the POI/TAZ vectors and deploy TAZ vectors to identify urban land use types using a random forest algorithm (RFA) model. Compared with some state-of-the-art probabilistic topic models (PTMs), the proposed method can efficiently obtain the highest accuracy (OA = 0.8728, kappa = 0.8399). Moreover, the results can be used to help urban planners to monitor dynamic urban land use and evaluate the impact of urban planning schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助佛说一缘采纳,获得10
1秒前
1秒前
大力奇迹完成签到,获得积分10
1秒前
柯柯完成签到,获得积分10
1秒前
小西完成签到,获得积分10
2秒前
加油发布了新的文献求助10
4秒前
4秒前
丢丢银完成签到,获得积分10
4秒前
风清扬发布了新的文献求助10
5秒前
5秒前
yan完成签到 ,获得积分10
5秒前
研友_8Y26PL完成签到,获得积分10
6秒前
Tbangl完成签到,获得积分10
6秒前
充电宝应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
完美世界应助科研通管家采纳,获得10
7秒前
Ava应助科研通管家采纳,获得10
7秒前
田様应助科研通管家采纳,获得10
7秒前
彭于晏应助科研通管家采纳,获得20
7秒前
雪米发布了新的文献求助10
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
完美世界应助科研通管家采纳,获得10
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
Ava应助科研通管家采纳,获得10
8秒前
song完成签到,获得积分20
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
田様应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
彭于晏应助科研通管家采纳,获得20
8秒前
8秒前
qql完成签到,获得积分10
8秒前
今后应助科研通管家采纳,获得10
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736061
求助须知:如何正确求助?哪些是违规求助? 5364012
关于积分的说明 15332114
捐赠科研通 4880090
什么是DOI,文献DOI怎么找? 2622504
邀请新用户注册赠送积分活动 1571528
关于科研通互助平台的介绍 1528348